Vol. 139
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-11-23
Design of Permanent Magnet Synchronous Wind Power Control System
By
Progress In Electromagnetics Research C, Vol. 139, 11-20, 2024
Abstract
To tackle the slow response and insufficient interference resistance exhibited by permanent magnet synchronous motors (PMSMs) under traditional field-oriented control (FOC). This paper proposes an integral sliding mode controller (SMC) to improve the speed loop, and adaptive law is also developed using a nonlinear smooth function to eliminate the chattering phenomenon of the sliding mode control. Meanwhile, an extended state observer is designed to estimate and compensate for the disturbances caused by wind speed uncertainty and the system's internal disturbances. Then, model predictive control (MPC) is employed for the current loop to eliminate the overshoot and achieve fast tracking. Finally, a step-by-step model reference adaptive scheme (MRAS) is proposed to identify the parameters and eliminate the internal disturbances in addressing parameter perturbation in the motor during operation. The simulation results demonstrate that the enhanced system exhibits almost no overshoot, superior steady-state performance, quick dynamic response, and resistance to both internal and external disturbances, ultimately validating the efficacy of the approach.
Citation
Huajun Ran, Wenjin Wei, and Yue Gao, "Design of Permanent Magnet Synchronous Wind Power Control System," Progress In Electromagnetics Research C, Vol. 139, 11-20, 2024.
doi:10.2528/PIERC23092504
References

1. Shi, Kuan, Yongjun Chen, Zhou He, Jie Wang, and Yinsheng Li, "Design of permanent magnet synchronous motor control system for electric vehicle air conditioning compressor based on vector control," Open Access Library Journal, Vol. 6, No. 1, 1-9, 2019.

2. Yu, Shenbo, Shuangshuang Zhong, Haining Zhao, P. P. Xia, and Kai Guo, "Calculation of circumferential modal frequencies of permanent magnet synchronous motor," Journal of Harbin Institute of Technology (New Series), Vol. 26, No. 01, 81-91, 2019.

3. Charalampidis, Alexandros C., Antonios E. Chaniotis, and Antonios G. Kladas, "Current waveform optimization techniques for synchronous machines and numerical evaluation in the case of a PMSM wind turbine generator," Electrical Engineering, Vol. 99, No. 2, 525-533, Jun. 2017.
doi:10.1007/s00202-016-0374-5

4. Tarczewski, T., L. M. Grzesiak, A. Wawrzak, K. Karwowski, and K. Erwinski, "A state-space approach for control of NPC type 3- level sine wave inverter used in FOC PMSM drive," Bulletin of The Polish Academy of Sciences-technical Sciences, Vol. 62, No. 3, 439-448, Sep. 2014.
doi:10.2478/bpasts-2014-0046

5. Zhao, Huang, Jiang-Zhou Cheng, Jun-Li, and Wan, "Research on MPPT control for SRG wind power generation system," Chinese Journal of Power Sources, 2016.

6. Kalyan, Ravulakari, J. R. Sharan, and M. S. Kumar, "Fuzzy logic control based PMSM drive by using SVPWM," Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 9, 2018.

7. Dhivya, S. and S. Anitha, "Sensorless control of PMSM using sliding mode technique," International Journal of Pure and Applied Mathematics, Vol. 119, No. 12, 2159-2166, 2018.

8. Gao, Yang, Yifei Wu, Xiang Wang, and Qingwei Chen, "Characteristic model-based adaptive control with genetic algorithm estimators for four-PMSM synchronization system," International Journal of Control Automation and Systems, Vol. 18, No. 6, 1605-1616, Jun. 2020.
doi:10.1007/s12555-019-0421-x

9. Xie, Wei, Xiaocan Wang, Fengxiang Wang, Wei Xu, Ralph M. Kennel, Dieter Gerling, and Robert D. Lorenz, "Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, 5402-5410, Sep. 2015.
doi:10.1109/TIE.2015.2410767

10. Peiqiang, L. I., Q. Shiyan, L. I. Xinran, et al. "Sliding mode variable structure control technology is used in doubly-fed induction generation systems," Proceedings of the CSU-EPSA, 2017.

11. Singh, Munendra Pratap and Er Vinay Kumar Tripathi, "Optimization and control of PMSM based wind energy using PI and fuzzy logic controller," Engering, Vol. 9, 2015.

12. Oliveira, C. M. R., M. L. Aguiar, Jose R. B. A. Monteiro, et al. "Vector control of induction motor using an integral sliding mode controller with anti-windup," Journal of Control, Automation and Electrical Systems, Vol. 27, No. 2, 169-178, 2016.

13. Liu, C., G. Luo, W. Tu, et al. "Servo systems with double closed loops based on active disturbance rejection controllers," Proceedings of the Chinese Society of Electrical Engineering, Vol. 37, No. 23, 7032-7039, 2017.

14. Li, Peng, Jian-jun Ma, Wen-qiang Li, and Z. Q. Zheng, "Improved integral sliding mode control for a class of nonlinear uncertain systems," Control and Decision, Vol. 24, No. 10, 1463-1472, 2009.

15. Yang, M., L. Niu, H. J. Wang, and D. G. Xu, "Research on the dynamic response of the current loop for PMSM with small inertia," Electric Machines and Control, 2009.

16. Guzman-Guemez, Jorge, Dina Shona Laila, and Suleiman M. Sharkh, "State-space approach for modeling and controlling a single-phase three-level NPC inverter with SVPWM," 2016 IEEE Power and Energy Society General Meeting (PESGM), 1-5, Boston, Ma, Jul. 2016.

17. Zanon, Mario and Timm Faulwasser, "Economic MPC without terminal constraints: Gradient-correcting end penalties enforce asymptotic stability," Journal of Process Control, Vol. 63, 1-14, Mar. 2018.
doi:10.1016/j.jprocont.2017.12.005

18. Xie, Wei, Xiaocan Wang, Fengxiang Wang, Wei Xu, Ralph M. Kennel, Dieter Gerling, and Robert D. Lorenz, "Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, 5402-5410, Sep. 2015.
doi:10.1109/TIE.2015.2410767

19. Yang, Nan, Shuo Zhang, Xueping Li, and Xuerong Li, "A new model-free deadbeat predictive current control for PMSM using parameter-free luenberger disturbance observer," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 11, No. 1, 407-417, Feb. 2023.
doi:10.1109/JESTPE.2022.3192883

20. Vafaie, Mohammad Hossein, Behzad Mirzaeian Dehkordi, Payman Moallem, and Arash Kiyoumarsi, "Improving the steady-state and transient-state performances of PMSM through an advanced deadbeat direct torque and flux control system," IEEE Transactions on Power Electronics, Vol. 32, No. 4, 2964-2975, Apr. 2017.
doi:10.1109/TPEL.2016.2577591

21. Wang, Yuanlin, Xiaocan Wang, Wei Xie, Fengxiang Wang, Manfeng Dou, Ralph M. Kennel, Robert D. Lorenz, and Dieter Gerling, "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, May 2017.
doi:10.1109/TIE.2017.2652338

22. Lan, Z, B. Wang, and C. Xu, "A novel three-vector model predictive current control for permanent magnet synchronous motor," Proceedings of the Chinese Society of Electrical Engineering, Vol. 38, 243-249, 2018.

23. Xu, Yanping, Miaomiao Hu, Zhongqiao Yan, Yanping Zhang, and Hao Ma, " A three-vector-based model predictive flux control for PMSM drives," Journal of Electrical Engineering & Technology, Vol. 16, No. 5, 2673-2684, Sep. 2021.
doi:10.1007/s42835-021-00815-4

24. Niu, L., M. Yang, G. Wang, and D. Xu, "Research on the robust current control algorithm of permanent magnet synchronous motor based on deadbeat control principle," Proceedings of the CSEE, 2013.

25. Li, Ze, Guodong Feng, Chunyan Lai, Debmalya Banerjee, Wenlong Li, and Narayan C. Kar, "Current injection-based multi-parameter estimation for dual three-phase IPMSM considering VSI nonlinearity," IEEE Transactions on Transportation Electrification, Vol. 5, No. 2, 405-415, Jun. 2019.
doi:10.1109/TTE.2019.2913270

26. Li, Xinyue and Ralph Kennel, "General formulation of kalman-filter-based online parameter identification methods for VSI-fed PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, 2856-2864, 2020.
doi:10.1109/TIE.2020.2977568

27. An, Xingke, Guohai Liu, Qian Chen, Wenxiang Zhao, and Xiangjin Song, "Adjustable model predictive control for IPMSM drives based on online stator inductance identification," IEEE Transactions on Industrial Electronics, Vol. 69, No. 4, 3368-3381, 2021.
doi:10.1109/TIE.2021.3076718

28. Yao, Xuliang, Chengqi Huang, et al. "A two-vector-based model predictive current control with online parameter identification for PMSM drives," Proceedings of the CSEE, Vol. 12, No. 30, 1-13, 2022.

29. Zeng, Zhezhao, Liangdong Wu, Zhenyuan Yang, et al. "Self-learning sliding-mode disturbance rejection control for non-affine systems," Control Theory & Applications, Vol. 33, No. 7, 980-987, 2016.

30. Huang, Xinyi, Hongguang Pan, and Keting Yuan, "Speed and current control of PMSM based on double MPC," 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 300-304, 2020.

31. Liu, Ying, Shanmei Cheng, Yunzheng Zhao, Jiang Liu, and Yesong Li, "Optimal two-vector combination-based model predictive current control with compensation for PMSM drives," International Journal of Electronics, Vol. 106, No. 6, 880-894, Jun. 2019.
doi:10.1080/00207217.2019.1570565