Vol. 126
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-04-02
An Antipodal Vivaldi Antenna with a Lower Cutoff Frequency Based on Spoof Surface Plasmon Polaritons and Corrugated Edges
By
Progress In Electromagnetics Research M, Vol. 126, 73-80, 2024
Abstract
In this paper, an antipodal Vivaldi antenna (AVA) with lower cutoff frequency is proposed based on spoof surface plasmon polaritons (SSPPs) and corrugated edges. Firstly, the gradient slots are etched on the external edges of two radiation arms of the conventional antipodal Vivaldi antenna. As a result, the cutoff frequency at the low frequency side will decrease slightly because the surface current path of the antenna is increased. More importantly, the SSPPs structure with identical units is etched on the inner side of two radiation arms, resulting in a large reduction of the cutoff frequency for the larger propagation constant of the SSPPs structure compared with radiation arms of the conventional antipodal Vivaldi antenna. Additionally, SSPPs structure on the stripline ensures good momentum matching and mode matching between quasi-TEM mode and SSPPs mode. Besides, to improve the gain at the high frequency region of the operation band, the introduced SSPPs structure on the inner side of two radiation arms is further optimized by varying groove depths. Experimental results demonstrate that the designed antipodal Vivaldi antenna exhibits a good radiation performance with a low cutoff frequency of 2.8 GHz and a maximum gain of 9.3 dBi.
Citation
Baoping Ren, Chenguang Zhao, Xuehui Guan, and Shaopeng Wan, "An Antipodal Vivaldi Antenna with a Lower Cutoff Frequency Based on Spoof Surface Plasmon Polaritons and Corrugated Edges," Progress In Electromagnetics Research M, Vol. 126, 73-80, 2024.
doi:10.2528/PIERM24012403
References

1. Zhu, Shuangshuang, Haiwen Liu, Zhijiao Chen, and Pin Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, May 2018.

2. Guo, Jiyu, Jisheng Tong, Qing Zhao, Jiao Jiao, Jianjian Huo, and Chunguang Ma, "An ultrawide band antipodal Vivaldi antenna for airborne GPR application," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 10, 1560-1564, Oct. 2019.

3. De Oliveira, Alexandre Maniçoba, Antonio Mendes de Oliveira Neto, Marcelo Bender Perotoni, N. Nurhayati, Henri Baudrand, Arnaldo de Carvalho, and João Francisco Justo, "A fern antipodal Vivaldi antenna for near-field microwave imaging medical applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8816-8829, Dec. 2021.
doi:10.1109/TAP.2021.3096942

4. Stern, Florian, Wolfgang Taute, Reinhard Knöchel, and Michael Höft, "Dual antipodal Vivaldi antenna based moisture sensor for industrial process control," IEEE Sensors Journal, Vol. 23, No. 19, 22430-22439, Oct. 2023.
doi:10.1109/JSEN.2023.3298374

5. Hood, Aaron Zachary, Tutku Karacolak, and Erdem Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 656-660, Mar. 2008.

6. Deng, Chao and Yong-Jun Xie, "Design of resistive loading Vivaldi antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 240-243, Jan. 2009.

7. Abbak, Mehmet, Mehmet Çayören, and İbrahim Akduman, "Microwave breast phantom measurements with a cavity‐backed Vivaldi antenna," IET Microwaves, Antennas & Propagation, Vol. 8, No. 13, 1127-1133, Oct. 2014.
doi:10.1049/iet-map.2013.0484

8. Wu, Jiangniu, Zhiqin Zhao, Zaiping Nie, and Qing-Huo Liu, "A printed UWB Vivaldi antenna using stepped connection structure between slotline and tapered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 698-701, Apr. 2014.

9. Sang, Lei, Shaoran Wu, Gang Liu, Jinhong Wang, and Wen Huang, "High-gain UWB Vivaldi antenna loaded with reconfigurable 3-D phase adjusting unit lens," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 2, 322-326, Feb. 2020.

10. Saleh, Sahar, Widad Ismail, Intan Sorfina Zainal Abidin, Moh’d Haizal Jamaluddin, Mohammed H. Bataineh, and Asem S. Al-Zoubi, "Novel compact UWB Vivaldi nonuniform slot antenna with enhanced bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 6592-6603, Aug. 2022.

11. Schneider, Jan, Michal Mrnka, Jan Gamec, Maria Gamcova, and Zbynek Raida, "Vivaldi antenna for RF energy harvesting," Radioengineering, Vol. 25, No. 4, 666-671, Sep. 2016.
doi:10.13164/re.2016.0666

12. Wang, Jingjing, Jianwei Liu, Yucheng Fan, and Yuxi Bai, "A novel Vivaldi antenna for UWB detection," Microwave and Optical Technology Letters, Vol. 65, No. 3, 826-843, Mar. 2023.

13. Rajesh, N., K. Malathi, S. Raju, V. Abhai Kumar, S. Deepak Ram Prasath, and M. Gulam Nabi Alsath, "Design of Vivaldi antenna with wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2102-2105, Apr. 2017.

14. Ren, Jinjing, Hezhihan Fan, Qi Tang, Zhongyuan Yu, Yang Xiao, and Xiang Zhou, "An ultra-wideband Vivaldi antenna system for long-distance electromagnetic detection," Applied Sciences, Vol. 12, No. 1, 528-542, Jan. 2022.

15. Ding, Manlai, Xuemei Wang, Yin Shen Wang, Zhiwei Hu, Gang Liu, Ziyan Liu, and Bingnan Wang, "A high gain Vivaldi antenna with multiple near-field dielectric lenses and grooved edges," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 2023, 11-22, May 2023.

16. Liu, Haiwen, Wenjuan Yang, Anxue Zhang, Shuangshuang Zhu, Zhengbiao Wang, and Taotao Huang, "A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications," IEEE Access, Vol. 6, 76282-76288, Nov. 2018.

17. Wang, Jingjing, Jianwei Liu, Kangming Hou, and Yongcheng Li, "A novel antipodal Vivaldi antenna for ultra-wideband far-field detection," AEU - International Journal of Electronics and Communications, Vol. 164, 154626, 2023.

18. Yang, Ling, Feng Xu, Tao Jiang, Jingxia Qiang, Shui Liu, and Junlin Zhan, "A wideband high-gain endfire antenna based on spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2522-2525, Dec. 2020.

19. Pitarke, J. M., V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Reports on Progress in Physics, Vol. 70, No. 1, 1-87, May 2007.

20. Yang, Yijuan, Zheng Li, Shanzhe Wang, Xuyang Chen, Junhong Wang, and Yingjie Jay Guo, "Miniaturized high-order-mode dipole antennas based on spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2409-2413, Dec. 2018.

21. Qu, Bingyue, Sen Yan, Anxue Zhang, Yongqiang Pang, and Zhuo Xu, "Miniaturization of monopole antenna based on spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1562-1566, Aug. 2021.

22. Cheng, Zhang Wen, Jie Deng, Meng Wang, Ji Ran Chen, Shimeng Wang, Shuai Luan, Xin Liu, Feng Gao, Hui Feng Ma, and Tie Jun Cui, "A compact axial-mode helical antenna based on spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 7, 5582-5590, Jul. 2023.

23. Fu, Qingfeng, Hao Ni, Guo Qing Luo, Lei Zhu, and Leilei Liu, "A high aperture efficiency endfire antenna based on spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 50-57, Jan. 2023.

24. Liao, Zhen, Yan Ziyi Che, Guo Qing Luo, Zhong Hai Zhang, Ya Hui Qian, and Ben Geng Cai, "Enhanced radiation characteristics for Vivaldi antenna using spoof surface plasmon polaritons," IEEE Transactions on Plasma Science, Vol. 49, No. 9, 2730-2736, Sep. 2021.

25. Liu, Leilei, Minghong Chen, and Xiaoxing Yin, "Single-layer high gain endfire antenna based on spoof surface plasmon polaritons," IEEE Access, Vol. 8, 64139-64144, Mar. 2020.

26. Gibson, Peter J., "The Vivaldi aerial," 1979 9th European Microwave Conference, 101-105, Brighton, UK, 1979.

27. Fei, Peng, Yong-Chang Jiao, Wei Hu, and Fu-Shun Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 127-130, 2011.

28. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Design of compact directive ultra wideband antipodal antenna," Microwave and Optical Technology Letters, Vol. 48, No. 12, 2448-2450, Dec. 2006.

29. Yin, Jia Yuan, Hao Chi Zhang, Yifeng Fan, and Tie Jun Cui, "Direct radiations of surface plasmon polariton waves by gradient groove depth and flaring metal structure," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 865-868, 2015.