Vol. 120
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-06-06
Broadband Generation Orbital Angular Momentum Beams Based on Uniform Phase Error Analysis of Uniform Circular Array
By
Progress In Electromagnetics Research Letters, Vol. 120, 53-58, 2024
Abstract
In this paper, we propose a method for generating broadband orbital angular momentum (OAM) beams, utilizing the two neighboring ports of the uniform circular array (UCA) excited with a phase difference of (2(π+δ)l)/N. This approach differs from current arrays used to generate an OAM beam with a phase difference of 2πl/N. We establish that the UCA can produce OAM beams covering 83% (7-17 GHz) of the bandwidth. The array antenna consists of three Vivaldi elements with a phase difference between adjacent ports, capable of generating OAM beams of mode 2 when being fed with equal amplitude and phase. In contrast to current OAM antenna arrays that require complex phase-shifting networks for feeding, our proposed antenna array offers simplicity in its feeding mechanism. Furthermore, the UCA-based Vivaldi antenna presents a novel approach for generating wideband OAM beams and holds significant potential for applications in broadband communication.
Citation
Na Li, Lingling Jiao, Guirong Feng, Ping Li, and Xiao-Wei Shi, "Broadband Generation Orbital Angular Momentum Beams Based on Uniform Phase Error Analysis of Uniform Circular Array," Progress In Electromagnetics Research Letters, Vol. 120, 53-58, 2024.
doi:10.2528/PIERL24041402
References

1. Thidé, Bo, Holger Then, J. Sjöholm, Kristoffer Palmer, Jan Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and Raisa Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.

2. Zhang, Zongtang, Shaoqiu Xiao, Yan Li, and Bing-Zhong Wang, "A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 521-524, 2016.

3. Yan, Yan, Guodong Xie, Martin P. J. Lavery, Hao Huang, Nisar Ahmed, Changjing Bao, Yongxiong Ren, Yinwen Cao, Long Li, Zhe Zhao, et al. "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nature Communications, Vol. 5, No. 1, 4876, Sep. 2014.

4. Allen, B., A. Tennant, Qiang Bai, and E. Chatziantoniou, "Wireless data encoding and decoding using OAM modes," Electronics Letters, Vol. 50, No. 3, 232-233, Jan. 2014.

5. Wang, Jue, Chengkun Cai, Feng Cui, Min Yang, Yize Liang, and Jian Wang, "Tailoring light on three-dimensional photonic chips: A platform for versatile OAM mode optical interconnects," Advanced Photonics, Vol. 5, No. 3, 036004, 2023.

6. Lee, Doojin, George Shaker, and William Melek, "A broadband wrapped bowtie antenna for UWB pulsed radar applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 12, 7803-7812, Dec. 2020.

7. Chen, Rui, Hui Xu, Marco Moretti, and Jiandong Li, "Beam steering for the misalignment in UCA-based OAM communication systems," IEEE Wireless Communications Letters, Vol. 7, No. 4, 582-585, 2018.

8. Zhang, Yingjie, Wei Feng, and Ning Ge, "On the restriction of utilizing orbital angular momentum in radio communications," 2013 8th International Conference on Communications and Networking in China (CHINACOM), 271-275, 2013.

9. Xie, Guodong, Long Li, Yongxiong Ren, Hao Huang, Yan Yan, Nisar Ahmed, Zhe Zhao, Martin P. J. Lavery, Nima Ashrafi, Solyman Ashrafi, Robert Bock, Moshe Tur, Andreas F. Molisch, and Alan E. Willner, "Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link," Optica, Vol. 2, No. 4, 357-365, 2015.

10. Zhang, Yingjie, Wei Feng, and Ning Ge, "On the restriction of utilizing orbital angular momentum in radio communications," 2013 8th International Conference on Communications and Networking in China (CHINACOM), 271-275, 2013.

11. Yuan, Tiezhu, Hongqiang Wang, Yongqiang Cheng, and Yuliang Qin, "Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results," Sensors, Vol. 17, No. 3, 630, 2017.

12. Wang, Jianqiu, Kang Liu, Yongqiang Cheng, and Hongqiang Wang, "Three-dimensional target imaging based on vortex stripmap SAR," IEEE Sensors Journal, Vol. 19, No. 4, 1338-1345, 2019.

13. Liu, Kang, Yongqiang Cheng, Yue Gao, Xiang Li, Yuliang Qin, and Hongqiang Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, Apr. 2017.

14. Bamler, Richard, "Principles of synthetic aperture radar," Surveys in Geophysics, Vol. 21, No. 2, 147-157, 2000.

15. Pan, Shilong, Xingwei Ye, Yamei Zhang, and Fangzheng Zhang, "Microwave photonic array radars," IEEE Journal of Microwaves, Vol. 1, No. 1, 176-190, Jan. 2021.

16. Yang, Yang, Kai Guo, Fei Shen, Yubin Gong, and Zhongyi Guo, "Generating multiple OAM based on a nested dual-arm spiral antenna," IEEE Access, Vol. 7, 138541-138547, 2019.

17. Beccaria, Michele, Gianluca Dassano, and Paola Pirinoli, "Single-layer, multi-mode OAM reflectarray antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 5, 980-984, May 2023.

18. Zheng, Shilie, Xiaonan Hui, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1530-1536, Apr. 2015.

19. Zhang, Qunhao, Wan Chen, Haifeng Sun, Jiahui Fu, Yulin Zhao, Hao Feng, and Kuang Zhang, "A circular-polarized vortex beams generation with orbital angular momentum based on a leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 6, 1311-1315, Feb. 2023.

20. Zhang, Yi-Ming and Jia-Lin Li, "Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7010-7020, Dec. 2018.

21. Zhang, Yi-Ming and Jia-Lin Li, "Comments on “Radial uniform circular antenna array for dual-mode oam communication”," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 719-721, Apr. 2018.

22. Bai, Hao, Guang-Ming Wang, and Ting Wu, "High-gain wideband metasurface antenna with low profile," IEEE Access, Vol. 7, 177266-177273, 2019.

23. Stegenburgs, Edgars, Andrea Bertoncini, Abderrahmen Trichili, Mohd Sharizal Alias, Tien Khee Ng, Mohamed-Slim Alouini, Carlo Liberale, and Boon S. Ooi, "Near-infrared OAM communication using 3D-printed microscale spiral phase plates," IEEE Communications Magazine, Vol. 57, No. 8, 65-69, Aug. 2019.

24. Spinello, Fabio, Giuseppe Parisi, Fabrizio Tamburini, Giovanni Massaro, Carlo G. Someda, Matteo Oldoni, Roberto A. Ravanelli, Filippo Romanato, and Elettra Mari, "High-order vortex beams generation in the radio-frequency domain," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 889-892, Sep. 2015.

25. Yuan, Tiezhu, Yongqiang Cheng, Hongqiang Wang, and Yuliang Qin, "Beam steering for electromagnetic vortex imaging using uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 704-707, 2016.

26. Wang, Ya-Wei, Guang-Ming Wang, and Bin-Feng Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1380-1383, 2013.

27. Liu, Baiyang, Yuehui Cui, and Ronglin Li, "A broadband dual-polarized dual-OAM-mode antenna array for OAM communication," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 744-747, 2016.

28. Xiao, Zhenning, Jun Lei, Jie Lin, and Weiwen Li, "Ultra-wideband vortex wave array based on vivaldi antenna elements," 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1-3, 2023.

29. Yang, Tianming, Deqiang Yang, Boning Wang, and Jianzhong Hu, "Experimentally validated, wideband, compact, OAM antennas based on circular Vivaldi antenna array," Progress In Electromagnetics Research C, Vol. 80, 211-219, Jan. 2018.

30. Deng, Changjiang, Wenhua Chen, Zhijun Zhang, Yue Li, and Zhenghe Feng, "Generation of OAM radio waves using circular Vivaldi antenna array," International Journal of Antennas and Propagation, Vol. 2013, Mar. 2013.