Vol. 128
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-08-14
Designing Magnetic Coupler of Static Wireless Power Transfer System for Thermal Reduction by Using Silicon-Cobalt Wafer
By
Progress In Electromagnetics Research M, Vol. 128, 61-69, 2024
Abstract
Wireless power transfer (WPT) for electric vehicles (EV) is a promising technology that can help with e-mobility because of its convenience and ability to reduce range anxiety issues. The safety concerns of such systems have received a lot of attention recently. Magnetic coupler is the most important component of WPT systems in terms of thermal safety as its temperature rises because of power outages during the charging process, which could cause damage to the surroundings and other components associated with the system. This article proposes a new thermal and magnetic coupler design by utilizing a Silicon-Cobalt wafer using the Spin Seebeck effect (SSE) phenomenon fabricated through the sputtering technique which can enhance the efficiency of the transmission coil as well as act as a heat exchanger to remove the heat from the coil as well as reduce temperature with the design model.
Citation
Umar Farooq, Jiropast Suakaew, Poramed Wongjom, Latif Jan, Maryam, and Wanchai Pijitrojana, "Designing Magnetic Coupler of Static Wireless Power Transfer System for Thermal Reduction by Using Silicon-Cobalt Wafer," Progress In Electromagnetics Research M, Vol. 128, 61-69, 2024.
doi:10.2528/PIERM24060603
References

1. Mi, Chunting Chris, Giuseppe Buja, Su Y. Choi, and Chun T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, 6533-6545, 2016.
doi:10.1109/TIE.2016.2574993

2. Ghosh, Aritra, "Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: A review," Energies, Vol. 13, No. 10, 2602, 2020.
doi:10.3390/en13102602

3. Covic, Grant A., John T. Boys, Michael L. G. Kissin, and Howard G. Lu, "A three-phase inductive power transfer system for roadway-powered vehicles," IEEE Transactions on Industrial Electronics, Vol. 54, No. 6, 3370-3378, 2007.
doi:10.1109/TIE.2007.904025

4. Keeling, N. A., J. T. Boys, and G. A. Covic, "Unity power factor inductive power transfer pick-up for high power applications," 2008 34th Annual Conference of IEEE Industrial Electronics, 1039-1044, Orlando, FL, USA, 2008.

5. Budhia, Mickel, Grant Covic, and John Boys, "A new IPT magnetic coupler for electric vehicle charging systems," IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 2487-2492, Glendale, AZ, USA, 2010.

6. Budhia, Mickel, Grant A. Covic, and John T. Boys, "Design and optimisation of magnetic structures for lumped inductive power transfer systems," 2009 IEEE Energy Conversion Congress and Exposition, 2081-2088, San Jose, CA, USA, 2009.

7. Sun, Xiaoli, Zhengguo Li, Xiaolin Wang, and Chengjiang Li, "Technology development of electric vehicles: A review," Energies, Vol. 13, No. 1, 90, 2019.
doi:10.3390/en13010090

8. Miller, John M., Perry T. Jones, Jan-Mou Li, and Omer C. Onar, "ORNL experience and challenges facing dynamic wireless power charging of EV's," IEEE Circuits and Systems Magazine, Vol. 15, No. 2, 40-53, 2015.
doi:10.1109/MCAS.2015.2419012

9. Li, Siqi, Zhe Liu, Han Zhao, Liyan Zhu, Chunyan Shuai, and Zheng Chen, "Wireless power transfer by electric field resonance and its application in dynamic charging," IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, 6602-6612, 2016.
doi:10.1109/TIE.2016.2577625

10. Kim, Dongwook, Dawon Jeong, Jongwook Kim, Haerim Kim, Junho Kim, Sung-Min Park, and Seungyoung Ahn, "Design and implementation of a wireless charging-based cardiac monitoring system focused on temperature reduction and robust power transfer efficiency," Energies, Vol. 13, No. 4, 1008, 2020.
doi:10.3390/en13041008

11. Kim, Mina, Katherine A. Kim, Jingook Kim, and Jee-Hoon Jung, "Design methodology of a 500 W wireless power transfer converter," 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW), 1-6, 2015.

12. Li, Weihan, Han Zhao, Junjun Deng, Siqi Li, and Chunting Chris Mi, "Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers," IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, 4429-4439, 2015.
doi:10.1109/TVT.2015.2479938

13. Sohn, Yeong H., Bo H. Choi, Eun S. Lee, Gyu C. Lim, Gyu-Hyeong Cho, and Chun T. Rim, "General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and SP compensations," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6030-6045, 2015.
doi:10.1109/TPEL.2015.2409734

14. Aditya, Kunwar and Sheldon S. Williamson, "Comparative study of series-series and series-parallel compensation topologies for electric vehicle charging," 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 426-430, Istanbul, Turkey, 2014.

15. Zhang, Wei, Siu-Chung Wong, K. Tse Chi, and Qianhong Chen, "Analysis and comparison of secondary series-and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio," IEEE Transactions on Power Electronics, Vol. 29, No. 6, 2979-2990, 2013.
doi:10.1109/TPEL.2013.2273364

16. Stielau, Oskar H. and Grant A. Covic, "Design of loosely coupled inductive power transfer systems," Powercon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00ex409), Vol. 1, 85-90, Perth, WA, Australia, 2000.

17. Neath, Michael J., Akshya K. Swain, Udaya K. Madawala, and Duleepa J. Thrimawithana, "An optimal pid controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm," IEEE Transactions on Power Electronics, Vol. 29, No. 3, 1523-1531, 2013.
doi:10.1109/TPEL.2013.2262953

18. Wu, Hunter H., Grant A. Covic, John T. Boys, and Daniel J. Robertson, "A series-tuned inductive-power-transfer pickup with a controllable AC-voltage output," IEEE Transactions on Power Electronics, Vol. 26, No. 1, 98-109, 2010.
doi:10.1109/TPEL.2010.2052069

19. Lee, Seung-Hwan, Myung-Yong Kim, Byung-Song Lee, and Jaehong Lee, "Impact of rebar and concrete on power dissipation of wireless power transfer systems," IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, 276-287, 2019.
doi:10.1109/TIE.2019.2896106

20. Gaona, Daniel E., Chaoqiang Jiang, and Teng Long, "Highly efficient 11.1-kW wireless power transfer utilizing nanocrystalline ribbon cores," IEEE Transactions on Power Electronics, Vol. 36, No. 9, 9955-9969, 2021.
doi:10.1109/TPEL.2021.3064902

21. Budhia, Mickel, John T. Boys, Grant A. Covic, and Chang-Yu Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 318-328, 2011.
doi:10.1109/TIE.2011.2179274

22. Xia, Bizhong, Yifan Liu, Rui Huang, Yadi Yang, Yongzhi Lai, Weiwei Zheng, Huawen Wang, Wei Wang, and Mingwang Wang, "Thermal analysis and improvements of the power battery pack with liquid cooling for electric vehicles," Energies, Vol. 12, No. 16, 3045, 2019.
doi:10.3390/en12163045

23. Zhao, Jiateng, Zhonghao Rao, Yutao Huo, Xinjian Liu, and Yimin Li, "Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles," Applied Thermal Engineering, Vol. 85, 33-43, 2015.
doi:10.1016/j.applthermaleng.2015.04.012

24. Zhang, Xuan, Chenzhen Liu, and Zhonghao Rao, "Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material," Journal of Cleaner Production, Vol. 201, 916-924, 2018.
doi:10.1016/j.jclepro.2018.08.076

25. Wang, Shen, Michael Andrew De Rooij, Willem Gerhardus Odendaal, Jacobus Daniel Van Wyk, and Dushan Boroyevich, "Reduction of high-frequency conduction losses using a planar litz structure," IEEE Transactions on Power Electronics, Vol. 20, No. 2, 261-267, 2005.
doi:10.1109/TPEL.2004.843022

26. Sallan, Jesus, Juan L. Villa, Andres Llombart, and Jose Fco Sanz, "Optimal design of ICPT systems applied to electric vehicle battery charge," IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, 2140-2149, 2009.
doi:10.1109/TIE.2009.2015359

27. Liu, Jiangtao, Qijun Deng, Dariusz Czarkowski, Marian K. Kazimierczuk, Hong Zhou, and Wenshan Hu, "Frequency optimization for inductive power transfer based on AC resistance evaluation in litz-wire coil," IEEE Transactions on Power Electronics, Vol. 34, No. 3, 2355-2363, 2018.
doi:10.1109/TPEL.2018.2839626

28. Deng, Qijun, Jiangtao Liu, Dariusz Czarkowski, Marian K. Kazimierczuk, Mariusz Bojarski, Hong Zhou, and Wenshan Hu, "Frequency-dependent resistance of litz-wire square solenoid coils and quality factor optimization for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 63, No. 5, 2825-2837, 2016.
doi:10.1109/TIE.2016.2518126

29. Acero, Jesus, Rafael Alonso, Jose M. Burdio, Luis A. Barragan, and Diego Puyal, "Frequency-dependent resistance in litz-wire planar windings for domestic induction heating appliances," IEEE Transactions on Power Electronics, Vol. 21, No. 4, 856-866, 2006.
doi:10.1109/TPEL.2006.876894

30. Wei, Guo, Xiulang Jin, Chao Wang, Jing Feng, Chunbo Zhu, and Milyaev Igor Matveevich, "An automatic coil design method with modified AC resistance evaluation for achieving maximum coil-coil efficiency in WPT systems," IEEE Transactions on Power Electronics, Vol. 35, No. 6, 6114-6126, 2019.
doi:10.1109/TPEL.2019.2952120

31. Petkov, R., "Optimum design of a high-power, high-frequency transformer," IEEE Transactions on Power Electronics, Vol. 11, No. 1, 33-42, 1996.
doi:10.1109/63.484414

32. Kral, Christian, Anton Haumer, and Thomas Bauml, "Thermal model and behavior of a totally-enclosed-water-cooled squirrel-cage induction machine for traction applications," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3555-3565, 2008.
doi:10.1109/TIE.2008.927242

33. Liang, Ce, Guang Yang, Feng Yuan, Xiaohua Huang, Ying Sun, Jin Li, and Kai Song, "Modeling and analysis of thermal characteristics of magnetic coupler for wireless electric vehicle charging system," IEEE Access, Vol. 8, 173177-173185, 2020.
doi:10.1109/ACCESS.2020.3025586

34. Niu, Songyan, Hang Yu, Shuangxia Niu, and Linni Jian, "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Vol. 275, 115344, 2020.
doi:10.1016/j.apenergy.2020.115344

35. Mohammad, Mostak, Omer C. Onar, Jason L. Pries, Veda P. Galigekere, Gui-Jia Su, and Jonathan Wilkins, "Thermal analysis of a 50 kW three-phase wireless charging system," 2021 IEEE Transportation Electrification Conference & Expo (ITEC), 1-6, Chicago, IL, USA, 2021.

36. Moghaddami, Masood and Arif Sarwat, "Time-dependent multi-physics analysis of inductive power transfer systems," 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 130-134, Long Beach, CA, USA, 2018.

37. Campi, Tommaso, Silvano Cruciani, Valerio De Santis, and Mauro Feliziani, "Emf safety and thermal aspects in a pacemaker equipped with a wireless power transfer system working at low frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 2, 375-382, 2016.
doi:10.1109/TMTT.2015.2511011

38. Xiao, Chunyan, Sihui Hao, Dingning Cheng, and Chunmao Liao, "Safety enhancement by optimizing frequency of implantable cardiac pacemaker wireless charging system," IEEE Transactions on Biomedical Circuits and Systems, Vol. 16, No. 3, 372-383, 2022.
doi:10.1109/TBCAS.2022.3170575

39. Kim, Hongseok, Chiuk Song, Dong-Hyun Kim, Daniel H. Jung, In-Myoung Kim, Young-Il Kim, Jonghoon Kim, Seungyoung Ahn, and Joungho Kim, "Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 2, 383-400, 2016.

40. Ibrahim, Ahmed and Mehdi Kiani, "A figure-of-merit for design and optimization of inductive power transmission links for millimeter-sized biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 6, 1100-1111, 2016.
doi:10.1109/TBCAS.2016.2515541

41. Bosshard, Roman, Johann Walter Kolar, Jonas Muhlethaler, Ivica Stevanovic, Bernhard Wunsch, and Francisco Canales, "Modeling and η-α-pareto optimization of inductive power transfer coils for electric vehicles," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 50-64, 2014.
doi:10.1109/JESTPE.2014.2311302

42. Bosshard, Roman and Johann W. Kolar, "Multi-objective optimization of 50 kW/85 kHz IPT system for public transport," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 4, No. 4, 1370-1382, 2016.
doi:10.1109/JESTPE.2016.2598755

43. DiSalvo, Francis J., "Thermoelectric cooling and power generation," Science, Vol. 285, No. 5428, 703-706, 1999.
doi:10.1126/science.285.5428.703

44. Bell, Lon E., "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, Vol. 321, No. 5895, 1457-1461, 2008.
doi:10.1126/science.1158899

45. Sundarraj, Pradeepkumar, Dipak Maity, Susanta Sinha Roy, and Robert A. Taylor, "Recent advances in thermoelectric materials and solar thermoelectric generators -- A critical review," RSC Advances, Vol. 4, No. 87, 46860-46874, 2014.
doi:10.1039/C4RA05322B

46. Rowe, David Michael, CRC Handbook of Thermoelectrics, CRC Press, 2018.

47. Goldsmid, H. Julian and others, Introduction to Thermoelectricity, Vol. 121, Springer, 2010.
doi:10.1007/978-3-642-00716-3

48. Cadeville, M. C. and J. Roussel, "Thermoelectric power and electronic structure of dilute alloys of nickel and cobalt with D transition elements," Journal of Physics F: Metal Physics, Vol. 1, No. 5, 686, 1971.
doi:10.1088/0305-4608/1/5/323

49. Gravier, Laurent, Santiago Serrano-Guisan, Francois Reuse, and Jean-Philippe Ansermet, "Thermodynamic description of heat and spin transport in magnetic nanostructures," Physical Review B --- Condensed Matter and Materials Physics, Vol. 73, No. 2, 024419, 2006.
doi:10.1103/PhysRevB.73.024419

50. Tsyplyatyev, Oleksandr, Oleksiy Kashuba, and Vladimir I. Fal'ko, "Thermally excited spin current and giant magnetothermopower in metals with embedded ferromagnetic nanoclusters," Physical Review B --- Condensed Matter and Materials Physics, Vol. 74, No. 13, 132403, 2006.
doi:10.1103/PhysRevB.74.132403

51. Hatami, Moosa, Gerrit E. W. Bauer, Qinfang Zhang, and Paul J. Kelly, "Thermal spin-transfer torque in magnetoelectronic devices," Physical Review Letters, Vol. 99, No. 6, 066603, 2007.
doi:10.1103/PhysRevLett.99.066603

52. Xiao, Jiang, Gerrit E. W. Bauer, Ken-Chi Uchida, Eiji Saitoh, and Sadamichi Maekawa, "Theory of magnon-driven spin seebeck effect," Physical Review B --- Condensed Matter and Materials Physics, Vol. 81, No. 21, 214418, 2010.
doi:10.1103/PhysRevB.81.214418

53. Adachi, Hiroto, Ken-Ichi Uchida, Eiji Saitoh, and Sadamichi Maekawa, "Theory of the spin seebeck effect," Reports on Progress in Physics, Vol. 76, No. 3, 036501, 2013.
doi:10.1088/0034-4885/76/3/036501

54. Rezende, S. M., R. L. Rodriguez-Suarez, R. O. Cunha, A. R. Rodrigues, F. L. A. Machado, G. A. Fonseca Guerra, J. C. Lopez Ortiz, and A. Azevedo, "Magnon spin-current theory for the longitudinal spin-seebeck effect," Physical Review B, Vol. 89, No. 1, 014416, 2014.
doi:10.1103/PhysRevB.89.014416

55. Valenzuela, Sergio O. and M. Tinkham, "Direct electronic measurement of the spin hall effect," Nature, Vol. 442, No. 7099, 176-179, 2006.
doi:10.1038/nature04937

56. Kimura, Takashi, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, "Room-temperature reversible spin hall effect," Physical Review Letters, Vol. 98, No. 15, 156601, 2007.
doi:10.1103/PhysRevLett.98.156601

57. Hoffmann, Axel, "Spin hall effects in metals," IEEE Transactions on Magnetics, Vol. 49, No. 10, 5172-5193, 2013.
doi:10.1109/TMAG.2013.2262947

58. Sinova, Jairo, Sergio O. Valenzuela, Jorg Wunderlich, C. H. Back, and T. Jungwirth, "Spin hall effects," Reviews of Modern Physics, Vol. 87, No. 4, 1213-1260, 2015.
doi:10.1103/RevModPhys.87.1213

59. Rominiyi, A. L., M. B. Shongwe, and B. J. Babalola, "Development and characterization of nanocrystalline cobalt powder prepared via high energy ball milling process," IOP Conference Series: Materials Science and Engineering, Vol. 430, No. 1, 012029, 2018.