Vol. 60
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-25
Rapid Design of Wide-Area Heterogeneous Electromagnetic Metasurfaces Beyond the Unit-Cell Approximation
By
Progress In Electromagnetics Research M, Vol. 60, 1-10, 2017
Abstract
We propose a novel numerical approach for the optimal design of wide-area heterogeneous electromagnetic metasurfaces beyond the conventionally used unit-cell approximation. The proposed method exploits the combination of Rigorous Coupled Wave Analysis (RCWA) and global optimization techniques (two evolutionary algorithms namely the Genetic Algorithm (GA) and a modi ed form of the Arti cial Bee Colony (ABC with memetic search phase method) are considered). As a speci c example, we consider the design of beam deflectors using all-dielectric nanoantennae for operation in the visible wavelength region; beam deflectors can serve as building blocks for other more complicated devices like metalenses. Compared to previous reports using local optimization approaches our approach improves device eciency; transmission eciency is especially improved for wide deflection angle beam deflectors. The ABC method with memetic search phase is also an improvement over the more commonly used GA as it reaches similar eciency levels with a 35% reduction in computation time. The method described here is of interest for the rapid design of a wide variety of electromagnetic metasurfaces irrespective of their operational wavelength.
Citation
Krupali D. Donda Ravi Hegde , "Rapid Design of Wide-Area Heterogeneous Electromagnetic Metasurfaces Beyond the Unit-Cell Approximation," Progress In Electromagnetics Research M, Vol. 60, 1-10, 2017.
doi:10.2528/PIERM17070405
http://www.jpier.org/PIERM/pier.php?paper=17070405
References

1. Genevet, P. and F. Capasso, "Holographic optical metasurfaces: A review of current progress," Reports on Progress in Physics, Vol. 78, No. 2, 24401, 2015.
doi:10.1088/0034-4885/78/2/024401

2. Lin, D., P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science, Vol. 345, No. 6194, 298-302, 2014.
doi:10.1126/science.1253213

3. Meinzer, N., W. L. Barnes, and I. R. Hooper, "Plasmonic meta-atoms and metasurfaces," Nature Photonics, Vol. 8, No. 12, 889-898, 2014.
doi:10.1038/nphoton.2014.247

4. Huidobro, P. A., M. Kraft, S. A. Maier, and J. B. Pendry, "Graphene as a tunable anisotropic or isotropic plasmonic metasurface," ACS Nano, Vol. 10, 5499-5506, 2016.
doi:10.1021/acsnano.6b01944

5. Minovich, A. E., A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, "Functional and nonlinear optical metasurfaces," Laser and Photonics Reviews, Vol. 9, No. 2, 195-213, 2015.
doi:10.1002/lpor.201400402

6. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139-150, 2014.
doi:10.1038/nmat3839

7. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters, Vol. 12, No. 9, 4932-4936, 2012.
doi:10.1021/nl302516v

8. Campione, S., L. I. Basilio, L. K. Warne, and M. B. Sinclair, "Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces," Optics Express, Vol. 23, No. 3, 2293, 2015.
doi:10.1364/OE.23.002293

9. Decker, M., I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, "High-efficiency dielectric huygens’ surfaces," Advanced Optical Materials, Vol. 3, No. 6, 813-820, 2015.
doi:10.1002/adom.201400584

10. Staude, I., A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, "Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks," ACS Nano, Vol. 7, No. 9, 7824-7832, 2013.
doi:10.1021/nn402736f

11. Arbabi, A., Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nature Nanotechnology, Vol. 10, No. 11, 937-943, 2015.
doi:10.1038/nnano.2015.186

12. Arbabi, A., Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmitarrays," Nature Communications, Vol. 6, 1-10, 2015.

13. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules," Optica, No. 6, 1-12, 2016.

14. Pfeiffer, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173

15. Pfeiffer, C. and A. Grbic, "Planar lens antennas of subwavelength thickness: Collimating leaky-waves with metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3248-3253, 2015.
doi:10.1109/TAP.2015.2422832

16. Hsu, L. Y., T. Lepetit, and B. Kant, "Extremely thin dielectric metasurface for carpet cloaking," Progress In Electromagnetics Research, Vol. 152, 33-40, 2015.
doi:10.2528/PIER15032005

17. Byrnes, S. J, A. Lenef, F. Aieta, and F. Capasso, "Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light," Optics Express, Vol. 24, No. 5, 5110, 2016.
doi:10.1364/OE.24.005110

18. Zhou, M., S. Busk Sørensen, E. Jørgensen, P. Meincke, O. S. Kim, and O. Breinbjerg, "Analysis of printed reflectarrays using extended local periodicity," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1494-1498, 2011.

19. Yu, Y. F., A. Y. Zhu, R. Paniagua-Dom`ınguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, "High-transmission dielectric metasurface with 2π phase control at visible wavelengths," Laser and Photonics Reviews, Vol. 9, No. 4, 412-418, 2015.
doi:10.1002/lpor.201500041

20. Egorov, V., M. Eitan, and J. Scheuer, "Genetically optimized all-dielectric metasurfaces," Optics Express, Vol. 25, No. 3, 937-943, 2017.
doi:10.1364/OE.25.002583

21. Cheng, J., D. Ansari-Oghol-Beig, and H. Mosallaei, "Wave manipulation with designer dielectric metasurfaces," Optics Letters, Vol. 39, No. 21, 6285-6288, 2014.
doi:10.1364/OL.39.006285

22. Guo, Z., L. Zhu, F. Shen, H. Zhou, and R. Gao, "Dielectric metasurface based high-efficiency polarization splitters," RSC Advances, Vol. 7, No. 16, 9872-9879, 2017.
doi:10.1039/C6RA27741A

23. Liu, V. and S. Fan, "S4: A free electromagnetic solver for layered periodic structures," Computer Physics Communications, Vol. 183, No. 10, 2233-2244, 2012.
doi:10.1016/j.cpc.2012.04.026

24. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

25. Karaboga, D. and B. Basturk, "A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm," Journal of Global Optimization, Vol. 39, No. 3, 459-471, 2007.
doi:10.1007/s10898-007-9149-x

26. Moscato, P. and C. Cotta, "A gentle introduction to memetic algorithms," Building, Vol. 7, No. 19, 1-36, 2003.

27. Bolaji, A. L., A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, "Artificial bee colony algorithm, its variants and applications: A survey," Journal of Theoretical and Applied Information Technology, Vol. 47, No. 2, 434-459, 2013.

28. Fister, I., J. Brest, and V. Zumer, "Memetic artificial bee colony algorithm for large-scale global optimization," Proceedings of IEEE World Congress on Computational Intelligence, 2012.

29. Bansal, J. C., H. Sharma, K. V. Arya, and A. Nagar, "Memetic search in artificial bee colony algorithm," Soft Computing, Vol. 17, No. 10, 1911-1928, 2013.
doi:10.1007/s00500-013-1032-8

30. Wang, H., D. Wang, and S. Yang, "A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems," Soft Computing, Vol. 13, No. 8-9, 763-780, 2009.
doi:10.1007/s00500-008-0347-3