Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-28
An Investigation into the Diffraction Effects of Building FAÇADE for Propagation Modelling
By
Progress In Electromagnetics Research M, Vol. 97, 25-34, 2020
Abstract
This paper investigates the problem of wave propagation on periodic building façade with ray tracing method. Compared with the common practice, which is to replace a complex building structure with a flat surface and cause reduction in simulation accuracy, in this research, the Uniform Theory of Diffraction (UTD) is utilized with ray tracing method to include diffraction effects on building facades in propagation simulation. Two scenarios have been modelled which are Moore Hall's façade and Malaysia shop houses respectively. First, the façade models were created based on real buildings, and propagation simulations were conducted for flat surface and knife edge approximations. Then, for different approximations, the accuracy of simulation results was further examined, which varied with the degree of simplification and the frequency of the signal. Also, the computation time was evaluated to consider the speed of simulation. This study is beneficial to the improvement of accuracy in propagation prediction and supports the development of ray-tracing propagation prediction software and the design of wireless communication system.
Citation
Yujia Zhang, and Soo Yong Lim, "An Investigation into the Diffraction Effects of Building FAÇADE for Propagation Modelling," Progress In Electromagnetics Research M, Vol. 97, 25-34, 2020.
doi:10.2528/PIERM20080401
References

1. Keller, J. B., "Geometrical theory of diffraction," Journal of the Optical Society of America, Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

2. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651

3. Landron, O., M. J. Feuerstein, and T. S. Rappaport, "A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 3, 341-351, 1996.
doi:10.1109/8.486303

4. Pena, D., R. Feick, H. D. Hristov, and W. Grote, "Measurement and modelling of propagation losses in brick and concrete walls for the 900-MHz band," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 1, 31-39, 2003.
doi:10.1109/TAP.2003.808539

5. Kwon, S., I.-S. Koh, H.-W. Moon, J.-W. Lim, and Y. J. Yoon, "Model of inhomogeneous building fa¸cade for ray tracing method," Electron. Lett., Vol. 44, No. 23, 1341-1342, 2008.
doi:10.1049/el:20081651

6. Hsiao, A., C. Yang, T. Wang, I. Lin, and W. Liao, "Ray tracing simulations for millimeter wave propagation in 5G wireless communications," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1901-1902, San Diego, CA, 2017.

7. Lim, S. Y., Z. Yun, and M. F. Iskander, "Modeling scattered EM field from a periodic building facade," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Toronto, ON, 2010.

8. Dimitriou, A. G. and G. D. Sergiadis, "Architectural features and urban propagation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 774-784, 2006.
doi:10.1109/TAP.2006.869919

9. Jacob, M., S. Priebe, R. Dickhoff, T. Kleine-Ostmann, T. Schrader, and T. Kurner, "Diffraction in mm and sub-mm wave indoor propagation channels," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, 833-844, Mar. 2012.
doi:10.1109/TMTT.2011.2178859

10. Ghaddar, M., L. Talbi, G. Y. Delisle, and J. Le Bel, "Deflecting-obstacle effects on signal propagation in the 60 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 403-414, Jan. 2013.
doi:10.1109/TAP.2012.2216852

11. Albani, M., G. Carluccio, and P. H. Pathak, "A uniform geometrical theory of diffraction for vertices formed by truncated curved wedges," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3136-3143, Jul. 2015.
doi:10.1109/TAP.2015.2427877

12. Chou, H., "UTD-type ray analysis of electromagnetic scattering from planar finite periodic structures," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Davos, 2016.

13. Rasekh, M. E., A. Shishegar, and F. Farzaneh, "A study of the effect of diffraction and rough surface scatter modeling on ray tracing results in an urban environment at 60 GHz," 2009 First Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), 27-31, Tehran, 2009.
doi:10.1109/MMWATT.2009.5450459

14. Cuinas, I., M. G. Sanchez, and A. V. Alejos, "Depolarization due to scattering on walls in the 5 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1804-1812, Jun. 2009.
doi:10.1109/TAP.2009.2019694

15. Alejos, A. V., M. G. Sanchez, and I. Cuinas, "Measurement and analysis of propagation mechanisms at 40 GHz: Viability of site shielding forced by obstacles," IEEE Transactions on Vehicular Technology, Vol. 57, No. 6, 3369-3380, Mar. 2008.
doi:10.1109/TVT.2008.920052

16. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 2012.

17. Ong, J. S. P., Architecture portfolio, [Online], available: https://jeffspong.wixsite.com/ongsengpeng0319016/practicum-semester [Accessed: 05- Apr- 2020].

18. Bertoni Henry, L., Radio Propagation for Modern Wireless Systems, Prentice Hall Professional Technical Reference, 1999.