Vol. 10
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-12-01
Comparative Analysis of Split-Ring Resonators for Tunable Negative Permeability Metamaterials Based on Anisotropic Dielectric Substrates
By
Progress In Electromagnetics Research M, Vol. 10, 25-38, 2009
Abstract
The magnetic resonance of various split ring resonators (SRRs) is numerically investigated to analyze the dependence of the resonance frequency on their parameter designs. The behavior of the magnetic resonance frequency in the configuration of the 2-cut single-ring SRR (2C-SRR) shows a larger shift in relation to the changes of the SRR size scaling, split width and substrate permittivity. A new magnetic particle formed by the 2C-SRR structure incorporating nematic liquid crystals (LCs) into the multilayered substrate is proposed for the realization of a tunable magnetic metamaterial. When using such inclusions, the tuning range of the magnetic resonance conditions could be as wide as ~1.1 GHz via changing the orientation of LC molecules by 90°.
Citation
Jiun-Yeu Chen, Wang-Lin Chen, Jia-Yi Yeh, Lien-Wen Chen, and Ching-Cheng Wang, "Comparative Analysis of Split-Ring Resonators for Tunable Negative Permeability Metamaterials Based on Anisotropic Dielectric Substrates," Progress In Electromagnetics Research M, Vol. 10, 25-38, 2009.
doi:10.2528/PIERM09110507
References

1. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photon., Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

2. Maslovski, S., P. Ikonen, I. Kolmakov, S. Tretyakov, and M. Kaunisto, "Artificial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
doi:10.2528/PIER04101101

3. Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, X. Wu, and Z. Xu, "A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators," Progress In Electromagnetics Research Letter, Vol. 6, 35-45, 2009.
doi:10.2528/PIERL08120708

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science,, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

5. Huangfu, J., L. Ran, H. Chen, X.-M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ­-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, 2004.
doi:10.1063/1.1655673

6. Chen, H. S., L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201

7. Wu, W., Z. Yu, S.-Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, N. X. Fang "Midinfrared metamaterials fabricated by nanoimprint lithography," Appl. Phys. Lett., Vol. 90, 063107, 2007.

8. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

9. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photon., Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

10. Wu, B., B. Li, and C. Liang, "Design of lowpass filter using a novel split-ring resonator defected ground structure," Microwave Optical Technol. Lett., Vol. 49, No. 2, 288-291, 2007.
doi:10.1002/mop.22111

11. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, 093104, 2007.

12. Lee, S.-W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of materials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.
doi:10.2528/PIER04020602

13. "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2665-2674, 2006.
doi:10.1109/TMTT.2006.872949

14. Aydin, K. and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys., Vol. 101, 024911, 2007.
doi:10.1063/1.2427110

15. Boulais, K. A., D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, "Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs," Appl. Phys. Lett., Vol. 93, 043518, 2008.
doi:10.1063/1.2967192

16. Kang, L., Q. Zhao, H. Zhao, and J. Zhou, "Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires," Opt. Express, Vol. 16, No. 22, 17269-17275, 2008.
doi:10.1364/OE.16.017269

17. Werner, D. H., D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express, Vol. 15, No. 6, 3342-3347, 2007.
doi:10.1364/OE.15.003342

18. Zhao, Q., L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett., Vol. 90, 011112, 2007.
doi:10.1063/1.2430485

19. Zhang, F., Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett., Vol. 92, 193104, 2008.
doi:10.1063/1.2926678

20. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Optical activity in extrinsically chiral metamaterial," Appl. Phys. Lett., Vol. 93, 191911, 2008.
doi:10.1063/1.3021082

21. Smith, D. R., S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

22. Zhou, J., Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett., Vol. 95, 223902, 2005.
doi:10.1103/PhysRevLett.95.223902

23. Khoo, I. C., Liquid Crystals, 2 Ed., Wiley, 2007.

24. Khoo, I. C. and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, 1993.

25. Buchnev, O., E. Ouskova, Y. Reznikov, V. Reshetnyak, H. Kresse, and A. Grabar, "Enhanced dielectric response of liquid crystal ferroelectric suspension," Mol. Cryst. Liq. Cryst., Vol. 422, 47-55, 2004.
doi:10.1080/15421400490502012