Vol. 14
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-08
Using the Oscillating Dipoles Model to Study the Electromagnetic Radiation Induced by Fracture of Rocks
By
Progress In Electromagnetics Research M, Vol. 14, 221-231, 2010
Abstract
In this paper, we make an assumption that the inertia vibrations of the electron groups in the rock fragment of the crack tips generate EMR pulses during the fracture of rocks. Based on this assumption we develop an oscillating dipoles model to analyze and simulate the EMR phenomena induced by the rock fractures. Then we use this model to simulate the EMR pulses recorded in the Rabinovitch's compression experiments on granite and chalk. Our simulations indicate a comparable accordance with Rabinovitch's experimental results. From our simulation results, we also find that the crack width associates with the maximum EMR voltage peak value.
Citation
Zhen Chen, and Ka-Ma Huang, "Using the Oscillating Dipoles Model to Study the Electromagnetic Radiation Induced by Fracture of Rocks," Progress In Electromagnetics Research M, Vol. 14, 221-231, 2010.
doi:10.2528/PIERM10041802
References

1. Nitsan, U., "Electromagnetic emission accompanying fracture of quartz-bearing rocks," Geophys. Res. Lett., Vol. 4, No. 8, 333-337, August 1977.
doi:10.1029/GL004i008p00333

2. Warwick, J. W., C. Stoker, and T. R. Meyer, "Radio emission associated with rock fracture: Possible application to the great Chilean earthquake of May 22 1960," J. Geophys. Res., Vol. 87(B4), 2851-2859, 1982.
doi:10.1029/JB087iB04p02851

3. Yamada, I., K. Masuda, and H. Mizutani, "Electromagnetic and acoustic emission associated with rock fracture," Phys. Earth Planet. Inter., Vol. 57, No. 1, 157-168, October 1989.
doi:10.1016/0031-9201(89)90225-2

4. Cress, G. O., B. T. Brady, and G. A. Rowell, "Sources of electromagnetic radiation from fracture of rock samples in laboratory," Geophys. Res. Lett., Vol. 14, No. 4, 331-334, April 1987.
doi:10.1029/GL014i004p00331

5. Frid, V., A. Rabinovitch, and D. Bahat, "Fracture induced electromagnetic radiation," J. Phys. D: Appl. Phys., Vol. 36, No. 13, 1620-1628, July 2003.
doi:10.1088/0022-3727/36/13/330

6. Rabinovitch, A., V. Frid, and D. Bahat, "Surface oscillations --- A possible source of fracture induced electromagnetic radiation," Tectonophysics, Vol. 431, No. 1, 15-21, February 2007.
doi:10.1016/j.tecto.2006.05.027

7. Dickinson, J. T., L. C. Jensen, S. C. Longford, R. R. Ryan, and E. Garcia, "Fracto-emission from deuterated titanium: Supporting evidence for a fracto-fusion mechanism," J. Mater. Res., Vol. 5, No. 1, 109-122, January 1990.
doi:10.1557/JMR.1990.0109

8. O'Keefe, S. G. and D. V. Thiel, "A mechanism for the production of electromagnetic radiation during fracture of brittle materials," Phys. Earth and Planet. Inter., Vol. 89, No. 1, 127-135, May 1995.
doi:10.1016/0031-9201(94)02994-M

9. Courtney, T. H., Mechanical Behavior of Materialsb, 2nd Ed., McGraw-Hill Companies, Inc., 2000.

10. Dickinson, J. T., E. E. Donaldson, and M. K. Park, "The emission of electrons and positive ions from fracture of materials," Journal of Materials Science, Vol. 16, No. 10, 2897-2908, October 1981.
doi:10.1007/BF02402856

11. Enomoto, Y. and H. Hashimoto, "Emission of charged particles from indentation fracture of rocks," Nature, Vol. 346, No. 16, 641-643, August 1990.
doi:10.1038/346641a0

12. Hadjicontis, V., C. Mavromatou, and D. Ninos, "Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation," Natrural Hazards and Earth System Sciences, Vol. 4, No. 5, 633-639, October 2004.
doi:10.5194/nhess-4-633-2004

13. Molchanov, O. A. and M. Hayakawa, "On the generation mechanism of ULF seismogenic electromagnetic emissions," Physics of the Earth and Planetary Interiors, Vol. 105, No. 3, 201-210, July 1998.
doi:10.1016/S0031-9201(97)00091-5

14. Pirhadi, A. and M. Hakkak, "An analytical investigation of the radiation characteristics of infinitesimal dipole antenna embedded in partially reflective surfaces to obtain high directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501

15. Arrighetti, W., P. DeCupis, and G. Gerosa, "Electromagnetic radiation from moving fractal sources: A plane-wave spectral approach," Progress In Electromagnetics Research, Vol. 58, 1-19, 2006.
doi:10.2528/PIER05072001

16. Rabinovitch, A., V. Frid, and D. Bahat, "Parametrization of electromagnetic radiation pulses obtained by triaxial fracture of granite samples," Philosophical Magazine Letters, Vol. 77, No. 5, 289-293, May 1998.
doi:10.1080/095008398178444

17. Rabinovitch, A., V. Frid, D. Bahat, and J. Goldbaum, "Fracture area calculation from electromagnetic radiation and its use in chalk failure analysis," International Journal of Rock Mechanics & Mining Sciences, Vol. 37, No. 7, 1149-1154, October 2000.
doi:10.1016/S1365-1609(00)00042-3

18. Perez, N., Fracture Mechanics, Kluwer Academic Publishers, 2004.

19. Thomson, W. T. and M. D. Dahleh, Theory of Vibration with Applications, 5th Ed., Prentice-Hall, 1998.

20. Cheng, D. K., Field and Wave Electromagnetism, 2nd Ed., Addison-Wesley, 1983.

21. Pollack, G. L. and D. R. Stump, Electromagnetism, Addison-Wesley, 2002.

22. Goldbaum, J., V. Frid, D. Bahat, and A. Rabinovitch, "An analysis of complex electromagnetic radiation signals induced by fracture," Meas. Sci. Technol., Vol. 14, No. 10, 1839-1844, September 2003.
doi:10.1088/0957-0233/14/10/314

23. Frid, V., D. Bahat, J. Goldbaum, and A. Rabinovitch, "Experimental and theoretical investigation of electromagnetic radiation induced by rock fracture," Isr. J. Earth Sci., Vol. 49, No. 1, 9-19, January 2000.
doi:10.1560/6LMJ-ABWH-MBEL-FRTY