1. Ishimaru, A. and Ed., Wave Propagation and Scattering in Random Media, 2nd edition, Academic, New York, 1978.
2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
3. Taflove, A. and S. Hagness, Computational Electromagnetics: The Finite-difference Time-domain Method, 3nd Edition, Artech House, Boston, MA, 2005.
4. Taflove, A., K. R. Umashankar, and T. G. Jurgens, "Validation of FDTD modeling of the radar cross-section of three-dimensional structures spanning up to 9 wavelengths," IEEE Transactions on Antennas and Propagation, Vol. 33, 662-666, 1985.
doi:10.1109/TAP.1985.1143644
5. Li, X., A. Taflove, and V. Backman, "Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 35-38, 2005.
doi:10.1109/LAWP.2005.845038
6. Umashankar, K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Transactions on Electromagnetic Compatibility, Vol. 24, 397-405, 1982.
doi:10.1109/TEMC.1982.304054
7. Shlager, K. L. and J. B. Schneider, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms," IEEE Transactions on Antennas and Propagation, Vol. 51, 642-653, 2003.
doi:10.1109/TAP.2003.808532
8. Nehrbass, J. W., J. O. Jevtc, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, 1194-1201, 1998.
doi:10.1109/8.718575
9. Cole, J. B., "High-accuracy realization of the Yee algorithm using non-standard finite differences," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 991-996, 1997.
doi:10.1109/22.588615
10. Kim, W.-T., I.-S. Koh, and J.-G. Yook, "3D isotropic dispersion (ID)-FDTD algorithm: Update equation and characteristics analysis," IEEE Transactions on Antennas and Propagation, Vol. 58, 1251-1259, 2010.
doi:10.1109/TAP.2010.2041311
11. Lan, K., Y. Liu, and W. Lin, "Higher order (2, 4) scheme for reducing dispersion in FDTD algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, 160-165, 1999.
doi:10.1109/15.765109
12. Georgakopoulos, S. V., C. R. Birtcher, C. A. Balanis, and R. A. Renaut, "Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration. Part 1: Theory," IEEE Antennas and Propagation Magazine, Vol. 44, 134-142, 2002.
doi:10.1109/74.997945
13. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, Part 2: Applications," IEEE Antennas and Propagation Magazine, Vol. 44, 92-101, 2002.
doi:10.1109/MAP.2002.1003639
14. Abd El-Raouf, H. E., E. A. El-Diwani, A. E.-H. Ammar, and F. El-Hefnawi, "A low-dispersion 3-D second-order in time fourth- order in space FDTD scheme (M3d24)," IEEE Transactions on Antennas and Propagation, Vol. 52, 1638-1646, 2004.
doi:10.1109/TAP.2004.831286
15. Zygiridis, T. T. and T. D. Tsiboukis, "Low-dispersion algorithms based on the higher order (2, 4) FDTD method," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1321-1327, 2004.
doi:10.1109/TMTT.2004.825695
16. Zygiridis, T. T. and T. D. Tsiboukis, "A dispersion-reduction scheme for the higher order (2, 4) FDTD method," IEEE Transactions on Magnetics, Vol. 40, 1464-1467, 2004.
doi:10.1109/TMAG.2004.824779
17. Hadi, M. F. and S. F. Mahmoud, "A high-order compact- FDTD algorithm for electrically large waveguide analysis," IEEE Transactions on Antennas and Propagation, Vol. 56, 2589-2598, 2008.
doi:10.1109/TAP.2008.927545
18. Georgakopoulos, S. V. and R. A. Renaut, "A hybrid forth-order FDTD utilizing a second-order FDTD subgrid," IEEE Microwave and Wireless Components Letters, Vol. 11, 462-464, 2001.
doi:10.1109/7260.966042
19. Fang, J., "Time domain finite difference computation for Maxwell's equations,", Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1989.
20. Hadi, M. F., "A finite volumes-based 3-D low dispersion FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, 2287-2293, 2007.
doi:10.1109/TAP.2007.901996
21. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computional Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159
22. Zygiridis, T. T. and T. D. Tsiboukis, "Development of higher order FDTD schemes with controllable dispersion error," IEEE Transactions on Antennas and Propagation, Vol. 53, 2952-2960, 2005.
doi:10.1109/TAP.2005.854559
23. Hadi, M. F. and M. Piket-May, "Modified FDTD (2, 4) scheme for modeling electrically large structures with high-phase accuracy," IEEE Transactions on Antennas and Propagation, Vol. 45, 254-264, 1997.
doi:10.1109/8.560344
24. Ogurtsov, S. and S. V. Georgakopoulos, "FDTD schemes with minimal numerical dispersion," IEEE Transactions on Advanced Packaging, Vol. 32, 199-204, 2009.
doi:10.1109/TADVP.2008.2008100
25. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 FDTD algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601