Vol. 18
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-05-27
A Hybrid Higher Order FDTD Scheme for Modeling Radar Cross Section of Electrically Large Targets
By
Progress In Electromagnetics Research M, Vol. 18, 143-157, 2011
Abstract
This paper proposes a hybrid higher order finite difference time domain (FDTD) scheme that combines the classical FDTD scheme and the higher order FDTD scheme with second order accuracy in time and fourth order accuracy in space for analyzing the three-dimensional electrically large scattering problems. The classical FDTD stencils were used as buffers in the scattered field region to make the higher order FDTD stencils not intrude inside the absorbing boundary condition's regions. The superior performance of the hybrid higher order FDTD scheme has been compared with the classical FDTD one. Numerical results demonstrate that the proposed scheme would improve the accuracy and save the computer resources significantly compared to the classical FDTD scheme involved in the radar cross section (RCS) calculation. The obtained computational efficiency allows this proposed scheme to model the RCS of electrically large targets using the number of higher order FDTD cells which are much less than that of the classical FDTD cells required by three-dimensional FDTD scheme.
Citation
Xia Ai, Yiping Han, Zhuyang Chen, and Xiao-Wei Shi, "A Hybrid Higher Order FDTD Scheme for Modeling Radar Cross Section of Electrically Large Targets," Progress In Electromagnetics Research M, Vol. 18, 143-157, 2011.
doi:10.2528/PIERM11042904
References

1. Ishimaru, A. and Ed., Wave Propagation and Scattering in Random Media, 2nd edition, Academic, New York, 1978.

2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

3. Taflove, A. and S. Hagness, Computational Electromagnetics: The Finite-difference Time-domain Method, 3nd Edition, Artech House, Boston, MA, 2005.

4. Taflove, A., K. R. Umashankar, and T. G. Jurgens, "Validation of FDTD modeling of the radar cross-section of three-dimensional structures spanning up to 9 wavelengths," IEEE Transactions on Antennas and Propagation, Vol. 33, 662-666, 1985.
doi:10.1109/TAP.1985.1143644

5. Li, X., A. Taflove, and V. Backman, "Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 35-38, 2005.
doi:10.1109/LAWP.2005.845038

6. Umashankar, K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Transactions on Electromagnetic Compatibility, Vol. 24, 397-405, 1982.
doi:10.1109/TEMC.1982.304054

7. Shlager, K. L. and J. B. Schneider, "Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms," IEEE Transactions on Antennas and Propagation, Vol. 51, 642-653, 2003.
doi:10.1109/TAP.2003.808532

8. Nehrbass, J. W., J. O. Jevtc, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, 1194-1201, 1998.
doi:10.1109/8.718575

9. Cole, J. B., "High-accuracy realization of the Yee algorithm using non-standard finite differences," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 991-996, 1997.
doi:10.1109/22.588615

10. Kim, W.-T., I.-S. Koh, and J.-G. Yook, "3D isotropic dispersion (ID)-FDTD algorithm: Update equation and characteristics analysis," IEEE Transactions on Antennas and Propagation, Vol. 58, 1251-1259, 2010.
doi:10.1109/TAP.2010.2041311

11. Lan, K., Y. Liu, and W. Lin, "Higher order (2, 4) scheme for reducing dispersion in FDTD algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, 160-165, 1999.
doi:10.1109/15.765109

12. Georgakopoulos, S. V., C. R. Birtcher, C. A. Balanis, and R. A. Renaut, "Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration. Part 1: Theory," IEEE Antennas and Propagation Magazine, Vol. 44, 134-142, 2002.
doi:10.1109/74.997945

13. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, Part 2: Applications," IEEE Antennas and Propagation Magazine, Vol. 44, 92-101, 2002.
doi:10.1109/MAP.2002.1003639

14. Abd El-Raouf, H. E., E. A. El-Diwani, A. E.-H. Ammar, and F. El-Hefnawi, "A low-dispersion 3-D second-order in time fourth- order in space FDTD scheme (M3d24)," IEEE Transactions on Antennas and Propagation, Vol. 52, 1638-1646, 2004.
doi:10.1109/TAP.2004.831286

15. Zygiridis, T. T. and T. D. Tsiboukis, "Low-dispersion algorithms based on the higher order (2, 4) FDTD method," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1321-1327, 2004.
doi:10.1109/TMTT.2004.825695

16. Zygiridis, T. T. and T. D. Tsiboukis, "A dispersion-reduction scheme for the higher order (2, 4) FDTD method," IEEE Transactions on Magnetics, Vol. 40, 1464-1467, 2004.
doi:10.1109/TMAG.2004.824779

17. Hadi, M. F. and S. F. Mahmoud, "A high-order compact- FDTD algorithm for electrically large waveguide analysis," IEEE Transactions on Antennas and Propagation, Vol. 56, 2589-2598, 2008.
doi:10.1109/TAP.2008.927545

18. Georgakopoulos, S. V. and R. A. Renaut, "A hybrid forth-order FDTD utilizing a second-order FDTD subgrid," IEEE Microwave and Wireless Components Letters, Vol. 11, 462-464, 2001.
doi:10.1109/7260.966042

19. Fang, J., "Time domain finite difference computation for Maxwell's equations,", Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1989.

20. Hadi, M. F., "A finite volumes-based 3-D low dispersion FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, 2287-2293, 2007.
doi:10.1109/TAP.2007.901996

21. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computional Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

22. Zygiridis, T. T. and T. D. Tsiboukis, "Development of higher order FDTD schemes with controllable dispersion error," IEEE Transactions on Antennas and Propagation, Vol. 53, 2952-2960, 2005.
doi:10.1109/TAP.2005.854559

23. Hadi, M. F. and M. Piket-May, "Modified FDTD (2, 4) scheme for modeling electrically large structures with high-phase accuracy," IEEE Transactions on Antennas and Propagation, Vol. 45, 254-264, 1997.
doi:10.1109/8.560344

24. Ogurtsov, S. and S. V. Georgakopoulos, "FDTD schemes with minimal numerical dispersion," IEEE Transactions on Advanced Packaging, Vol. 32, 199-204, 2009.
doi:10.1109/TADVP.2008.2008100

25. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 FDTD algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601