Vol. 19
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-06-23
Application of the Fractional Fourier Transform to Moving Train Imaging
By
Progress In Electromagnetics Research M, Vol. 19, 13-23, 2011
Abstract
This paper introduces an imaging algorithm with application of fractional Fourier transform (FrFT) for ground moving train imaging by Ku-band ground-based radar. In view of the fact that the train speed is varying when acrossing the radar beam, the multiple Doppler parameters are estimated corresponding to different range positions, i.e., they are estimated from different sections of data in FrFT domain, then the train is imaged section by section, and finally these sectional images are combined to get the full image of the train. Because traditional parameter estimation method by two-dimensionally searching the peaks in FrFT domain is inefficient, we transfer the parameter searching problem into an one-dimensional optimization problem, which can be solved with high efficiency by using the golden section searching method.
Citation
Lingjuan Yu Yunhua Zhang , "Application of the Fractional Fourier Transform to Moving Train Imaging," Progress In Electromagnetics Research M, Vol. 19, 13-23, 2011.
doi:10.2528/PIERM11051401
http://www.jpier.org/PIERM/pier.php?paper=11051401
References

1. Almeida, L. B., "The fractional Fourier transform and time-frequency representations," IEEE Transactions on Signal Processing, Vol. 42, No. 11, 3084-3091, 1994.
doi:10.1109/78.330368

2. Haldum Ozaktas, M., et al., "Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms," J. Opt. Soc. Am. A, Vol. 11, No. 2, 547-559, 1994.
doi:10.1364/JOSAA.11.000547

3. Yetik, I. S. and A. Nehorai, "Beamforming using the fractional Fourier transform," IEEE Trans. Signal Processing, Vol. 51, No. 6, 1663-1668, 2003.
doi:10.1109/TSP.2003.811223

4. Jang, S., et al., "Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns," IEEE Trans. Antennas and Propagationm, Vol. 52, No. 11, 3109-3121, 2004.
doi:10.1109/TAP.2004.835165

5. Amein, A. S. and J. J. Soraghan, "A new chirp scaling algorithm based on the fractional Fourier transform," IEEE Signal Process. Lett., Vol. 12, No. 10, 805-807, 2005.
doi:10.1109/LSP.2005.855547

6. Borden, B., "The fractional Fourier transform and ISAR imaging," Inv. Probl. Lett., Vol. 16, No. 2, 5-8, 2000.
doi:10.1088/0266-5611/16/2/101

7. Sun, H.-B., et al., "Application of the fractional Fourier transform to moving target detection in airborne SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 4, 1416-1424, 2002.
doi:10.1109/TAES.2002.1145767

8. Zhang, Y., et al., "Radar imaging and electromagnetic scattering analysis for ground moving target by ground-based stationary radar," Asia Pacific Microwave Conference, 2224-2227, 2009.
doi:10.1109/APMC.2009.5385425

9. Zhang, Y. H., Y. Deng, W. S. Zhai, X. K. Zhang, and J. S. Jiang, "Time-frequency processing and analysis of radar imaging experiment data for a moving train," The 7th Iasted International Conference on Antennas, Radar and Wave Propagation, Cambridge, Massachusetts, USA, Nov. 1-3, 2010.

10. Zhang, Y., et al., "Moving train imaging by ground-based Ka-band radar," The 6th Loughborough Antennas & Propagation Conference, 413-416, Loughborough, 2009.

11. Xue, L., Optimization Techniques in Engineering, Tianjing University Press, Tianjing, 1989 (in Chinese)..

12. Lin, Q., T. Ran, and S. Zhou, "Detection and parameter estimation of multi-component LFM signal based on the fractional Fourier transform," Science in China: Series F Information Science, Vol. 47, No. 2, 184-198, 2004.
doi:10.1360/02yf0456

13. Ozaktas, H. M., et al., "Digital computation of the fractional Fourier tansform," IEEE Transactions on Signal Processing, Vol. 44, No. 9, 2141-2150, 1996.
doi:10.1109/78.536672

14. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House Publishers, 2005.