Vol. 33
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-16
A Least Squares Finite Element Method for the Extended Maxwell System
By
Progress In Electromagnetics Research M, Vol. 33, 137-151, 2013
Abstract
A finite element method based on the first order system LL* (FOSLL*) approach is derived for time harmonic Maxwell's equations in three dimensional domains. The finite element solution is a potential for the original field in a sense that the original field U is given by U = L*u. The Maxwellian boundary data appears as natural boundary condition. Homogeneous Dirichlet boundary conditions for the potential must be imposed, and they are circumvented with weak enforcement of boundary conditions and it is proved that the sesquilinear form of the finite element system is elliptic in the space where the Dirichlet boundary conditions are satisfied weakly.
Citation
Juhani Kataja, "A Least Squares Finite Element Method for the Extended Maxwell System," Progress In Electromagnetics Research M, Vol. 33, 137-151, 2013.
doi:10.2528/PIERM13080702
References

1. Monk, P., Finite Element Methods for Maxwell's Equations, Numerical Analysis and Scientific Computation Series, Clarendon Press, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001

2. Bochev, P., "Least-squares finite element methods for first-order elliptic systems," Int. J. Numer. Anal. Model., Vol. 1, No. 1, 49-64, 2004.

3. Jiang, B.-N., "The Least-squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics," Scientific Computation, Springer, Berlin, New York, 1998.

4. Aziz, A. K., R. B. Kellogg, and A. B. Stephens, "Least squares methods for elliptic systems," Mathematics of Computation, Vol. 44, No. 169, 53-70, 1985.
doi:10.1090/S0025-5718-1985-0771030-5

5. Bochev, P. and M. Gunzburger, Least-squares Finite Element Methods, Applied Mathematical Sciences, Springer, 2009.
doi:10.1007/b13382

6. Bramble, J. H., T. V. Kolev, and J. E. Pasciak, "A least-squares approximation method for the time-harmonic Maxwell equations," Journal of Numerical Mathematics, Vol. 13, No. 4, 237-263, 2005.
doi:10.1515/156939505775248347

7. Cai, Z., T. A. Manteu®el, S. F. McCormick, and J. Ruge, "First-order system LL* (FOSLL*): Scalar elliptic partial differential equations," SIAM J. Numerical Analysis, Vol. 39, No. 4, 1418-1445, 2001.
doi:10.1137/S0036142900388049

8. Lee, E. and T. A. Manteuffel, "FOSLL* Method for the eddy current problem with three-dimensional edge singularities," SIAM J. Numerical Analysis, Vol. 45, No. 2, 787-809, 2007.
doi:10.1137/050647001

9. Petrovsky, I., Lectures on Partial Differential Equations, Cambridge University Press, 1954.

10. Picard, R., "On the low frequency asymptotics in electromagnetic theory," Journal Fur Die Reine Und Angewandte Mathematik, Vol. 1984, 50-73, 1984.

11. Picard, R., "On a structural observation in generalized electromagnetic theory," Journal of Mathematical Analysis and Applications, Vol. 110, No. 1, 247-264, 1985.
doi:10.1016/0022-247X(85)90348-8

12. Babu·ska, I., "The finite element method with Lagrangian multipliers," Numerische Mathematik, Vol. 20, No. 3, 179-192, 1973.
doi:10.1007/BF01436561

13. Balay, S., J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, "PETSc Web page,", 2013, http://www.mcs.anl.gov/petsc.

14. Costabel, M., "A coercive bilinear form for Maxwell's equation," J. Math. Anal. Appl., Vol. 157, No. 2, 527-541, 1991.
doi:10.1016/0022-247X(91)90104-8

15. Taskinen, M. and S. Vanska, "Current and charge integral equation formulations and Picard's extended Maxwell system," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3495-3503, 2007.
doi:10.1109/TAP.2007.910363

16. Leis, R., Initial Boundary Value Problems in Mathematical Physics, Teubner, 1986.
doi:10.1007/978-3-663-10649-4

17. Girault, V. and P. Raviart, "Finite Element Methods for Navier-stokes Equations: Theory and Algorithms," Springer Series in Computational Mathematics, Springer-Verlag, 1986.

18. Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001.

19. Nedelec, J., "Mixed finite elements in R3," Numerische Mathematik, Vol. 35, No. 3, 315-341, 1980.
doi:10.1007/BF01396415

20. Logg, A., K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the Finite Element Method, Springer, 2012.
doi:10.1007/978-3-642-23099-8

21. Picard, R., "An elementary proof for a compact imbedding result in generalized electromagnetic theory," Mathematische Zeitschrift, Vol. 187, 151-164, 1984.
doi:10.1007/BF01161700

22. Smith, K., "Inequalities for formally positive integro-differential forms," Bulletin of the American Mathematical Society, Vol. 67, 368-370, 1961.
doi:10.1090/S0002-9904-1961-10622-8