1. Monk, P., Finite Element Methods for Maxwell's Equations, Numerical Analysis and Scientific Computation Series, Clarendon Press, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001
2. Bochev, P., "Least-squares finite element methods for first-order elliptic systems," Int. J. Numer. Anal. Model., Vol. 1, No. 1, 49-64, 2004.
3. Jiang, B.-N., "The Least-squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics," Scientific Computation, Springer, Berlin, New York, 1998.
4. Aziz, A. K., R. B. Kellogg, and A. B. Stephens, "Least squares methods for elliptic systems," Mathematics of Computation, Vol. 44, No. 169, 53-70, 1985.
doi:10.1090/S0025-5718-1985-0771030-5
5. Bochev, P. and M. Gunzburger, Least-squares Finite Element Methods, Applied Mathematical Sciences, Springer, 2009.
doi:10.1007/b13382
6. Bramble, J. H., T. V. Kolev, and J. E. Pasciak, "A least-squares approximation method for the time-harmonic Maxwell equations," Journal of Numerical Mathematics, Vol. 13, No. 4, 237-263, 2005.
doi:10.1515/156939505775248347
7. Cai, Z., T. A. Manteu®el, S. F. McCormick, and J. Ruge, "First-order system LL* (FOSLL*): Scalar elliptic partial differential equations," SIAM J. Numerical Analysis, Vol. 39, No. 4, 1418-1445, 2001.
doi:10.1137/S0036142900388049
8. Lee, E. and T. A. Manteuffel, "FOSLL* Method for the eddy current problem with three-dimensional edge singularities," SIAM J. Numerical Analysis, Vol. 45, No. 2, 787-809, 2007.
doi:10.1137/050647001
9. Petrovsky, I., Lectures on Partial Differential Equations, Cambridge University Press, 1954.
10. Picard, R., "On the low frequency asymptotics in electromagnetic theory," Journal Fur Die Reine Und Angewandte Mathematik, Vol. 1984, 50-73, 1984.
11. Picard, R., "On a structural observation in generalized electromagnetic theory," Journal of Mathematical Analysis and Applications, Vol. 110, No. 1, 247-264, 1985.
doi:10.1016/0022-247X(85)90348-8
12. Babu·ska, I., "The finite element method with Lagrangian multipliers," Numerische Mathematik, Vol. 20, No. 3, 179-192, 1973.
doi:10.1007/BF01436561
13. Balay, S., J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, "PETSc Web page,", 2013, http://www.mcs.anl.gov/petsc.
14. Costabel, M., "A coercive bilinear form for Maxwell's equation," J. Math. Anal. Appl., Vol. 157, No. 2, 527-541, 1991.
doi:10.1016/0022-247X(91)90104-8
15. Taskinen, M. and S. Vanska, "Current and charge integral equation formulations and Picard's extended Maxwell system," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3495-3503, 2007.
doi:10.1109/TAP.2007.910363
16. Leis, R., Initial Boundary Value Problems in Mathematical Physics, Teubner, 1986.
doi:10.1007/978-3-663-10649-4
17. Girault, V. and P. Raviart, "Finite Element Methods for Navier-stokes Equations: Theory and Algorithms," Springer Series in Computational Mathematics, Springer-Verlag, 1986.
18. Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001.
19. Nedelec, J., "Mixed finite elements in R3," Numerische Mathematik, Vol. 35, No. 3, 315-341, 1980.
doi:10.1007/BF01396415
20. Logg, A., K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the Finite Element Method, Springer, 2012.
doi:10.1007/978-3-642-23099-8
21. Picard, R., "An elementary proof for a compact imbedding result in generalized electromagnetic theory," Mathematische Zeitschrift, Vol. 187, 151-164, 1984.
doi:10.1007/BF01161700
22. Smith, K., "Inequalities for formally positive integro-differential forms," Bulletin of the American Mathematical Society, Vol. 67, 368-370, 1961.
doi:10.1090/S0002-9904-1961-10622-8