Vol. 37
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-07-08
Three-Dimensional Scattering Centers Extraction of Radar Targets Using High Resolution Techniques
By
Progress In Electromagnetics Research M, Vol. 37, 127-137, 2014
Abstract
In optical region, the scattering center model is very useful in scattering analysis, target recognition and data compression. The method based on Hough transformation performs well in most cases. However, the algorithm extracts the scattering centers one by one via a clean method, which is time consuming. To solve this problem, a novel method is proposed in this paper to extract the scattering centers. By searching the estimated 1D scattering centers, the candidate positions for 3D scattering centers are extracted. Then the candidates are discriminated by a clustering based procedure. By employing the new algorithm, the 3D scattering centers can be extracted simply and the clean step is unnecessary, which makes the procedure efficient. The experiment results of the high-frequency-electro-magnetic data demonstrate the performance of the proposed method.
Citation
Jun Zhang, Jiemin Hu, Yanzhao Gao, Ronghui Zhan, and Qinglin Zhai, "Three-Dimensional Scattering Centers Extraction of Radar Targets Using High Resolution Techniques," Progress In Electromagnetics Research M, Vol. 37, 127-137, 2014.
doi:10.2528/PIERM14041509
References

1. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, Feb. 1962.
doi:10.1364/JOSA.52.000116

2. Potter, L. C., D. M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 10, 1058-1067, Oct. 1995.
doi:10.1109/8.467641

3. Hurst, M. P. and R. Mittra, "Scattering center analysis via Prony's method," IEEE Trans. Antennas Propag., Vol. 35, No. 8, 986-988, Aug. 1987.
doi:10.1109/TAP.1987.1144210

4. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337

5. Hoop, A. T., "Theorem on maximum absorption of electromagnetic radiation by a scattering object of bounded extend," Radio Sci., Vol. 16, 971-974, 1981.
doi:10.1029/RS016i006p00971

6. Swanson, N. L. and B. D. Billard, "Electively maximizing and minimizing the scattering and absorption of electromagnetic waves,", US Patent 6842242 B2, 2005.

7. Valagiannopoulos, C. A., "On smoothening the singular field developed in the vicinity of metallic edges," nternational Journal of Applied Electromagnetics and Mechanics, Vol. 31, 67-77, 2009.

8. Bhalla, R., J. Moore, and H. Ling, "A global scattering center representation of complex targets using the shooting and bouncing ray technique," IEEE Trans. Antennas Propag., Vol. 45, No. 12, 1850-1856, Dec. 1997.
doi:10.1109/8.650204

9. Zhou, J., H. Zhao, Z. Shi, and Q. Fu, "Global scattering center model extraction of radar targets based on wideband measurements," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2051-2060, Jul. 2008.
doi:10.1109/TAP.2008.924698

10. McClure, M., R. C. Qiu, and L. Carin, "On the superresolution identification of observables from swept-frequency scattering data," IEEE Trans. Antennas Propag., Vol. 45, No. 4, 631-641, Apr. 1997.
doi:10.1109/8.564089

11. Guo, K.-Y., Q.-F. Li, X.-Q. Sheng, and M. Gashinova, "Sliding scattering center model for extended streamlined targets," Progress In Electromagnetics Research, Vol. 139, 499-516, 2013.
doi:10.2528/PIER13032111

12. Zhan, R. and J. Wan, "Iterated unscented Kalman filter for passive target tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1155-1162, 2007.
doi:10.1109/TAES.2007.4383605

13. Zhan, R., Y. Gao, J. Hu, and J. Zhang, "SMC-PHD based multitarget track-before-detect with nonstandard point observations model," Journal of Central South University, 2014.

14. El Assad, S., X. Morin, and D. Barba, "Compression of polarimetric synthetic aperture radar data," Progress In Electromagnetics Research, Vol. 39, 125-145, 2003.
doi:10.2528/PIER02053002

15. You, Y. N., H. P. Xu, C. S. Li, and L. Q. Zhang, "Data acquisition and processing of parallel frequency SAR based on compressive sensing," Progress In Electromagnetics Research, Vol. 133, 199-215, 2013.
doi:10.2528/PIER12070613

16. Zhang, X., J. Qin, and G. Li, "SAR target classification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.
doi:10.2528/PIER12120705

17. Makal, S., A. Kizilay, and L. Durak, "On the target classification through wavelet-compressed scattered ultrawide-band electric field data and ROC analysis," Progress In Electromagnetics Research, Vol. 82, 419-431, 2008.
doi:10.2528/PIER08040903

18. Hu, J. M., W. Zhou, Y. W. Fu, X. Li, and N. Jing, "Uniform rotational motion compensation for ISAR based on phase cancellation," IEEE Geosci. Remote Sensing Lett., Vol. 8, No. 4, 636-640, Jul. 2011.
doi:10.1109/LGRS.2010.2098841

19. Hu, J., J. Zhang, Q. Zhai, R. Zhan, and D. Lu, "ISAR imaging using a new stepped-frequency signal format," IEEE Transactions on Geoscience Remote Sensing, Vol. 52, No. 7, 4291-4305, Jul. 2014.

20. Huffel, S. V., H. Park, and J. B. Rosen, "Formulation and solution of structured total least norm problems for parameter estimation," IEEE Transactions on Signal Processing, Vol. 44, No. 10, 2464-2474, Oct. 1996.
doi:10.1109/78.539031

21. Chen, F. J. and C. Carrson, "Estimation of two-dimensional frequencies using modified matrix pencil method," IEEE Transactions on Signal Processing, Vol. 55, No. 2, 718-724, Jan. 2007.
doi:10.1109/TSP.2006.885813

22. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

23. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

24. Yan, X., J.-M. Hu, G. Zhao, J. Zhang, and J. Wan, "A new parameter estimation method for GTD model based on modified compressed sensing," Progress In Electromagnetics Research, Vol. 141, 553-575, 2013.
doi:10.2528/PIER13052017