Vol. 37
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-06-25
Modified RANSAC for Sift-Based InSAR Image Registration
By
Progress In Electromagnetics Research M, Vol. 37, 73-82, 2014
Abstract
In this paper, we propose a modified version of the Random Sample Consensus (RANSAC) method for Interferometric Synthetic Aperture Radar (InSAR) image registration based on the Scale-Invariant Feature Transform (SIFT). Because of speckle, the ``maximization of inliers'' criterion in the original RANSAC cannot obtain the optimal results. Since in InSAR image registration, the registration accuracy is in inverse proportion to number of residues. Therefore, we modify the old criterion with a new one --- minimization of residues --- to obtain the optimal results. We tested our method on a variety of real data from different sensors, and the experimental results demonstrated the validity and robustness of the proposed method.
Citation
Yang Wang, Haifeng Huang, Zhen Dong, and Manqing Wu, "Modified RANSAC for Sift-Based InSAR Image Registration," Progress In Electromagnetics Research M, Vol. 37, 73-82, 2014.
doi:10.2528/PIERM14042202
References

1. Bamler, R. and P. Hartl, "Synthetic aperture radar interferometry," Inverse Problems, Vol. 14, R1-R54, 1998.
doi:10.1088/0266-5611/14/4/001

2. Hanssen, R. F., Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic, 2001.

3. Li, C. and D. Y. Zhu, "A residue-pairing algorithm for InSAR phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.
doi:10.2528/PIER09070706

4. Wu, B. I., M. C. Yeung, Y. Hara, and J. A. Kong, "InSAR height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902

5. Li, S., H. Xu, and L. Zhang, "An advanced DSS-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
doi:10.2528/PIER11042301

6. Liu, Q., S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The ``slope" effect of coherent transponder in InSAR DEM," Progress In Electromagnetics Research, Vol. 127, 351-370, 2012.
doi:10.2528/PIER12022111

7. Stone, H. S., M. T. Orchard, E. C. Change, and S. A. Martucci, "A fast direct Fourier based algorithm for subpixel registration of images," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 10, 2235-2243, 2001.
doi:10.1109/36.957286

8. Lin, Q., J. F. Vesecky, and H. A. Zebker, "New approaches in interferometric SAR data processing," IEEE Trans. Geosci Remote Sens., Vol. 30, No. 3, 560-567, 1992.
doi:10.1109/36.142934

9. Gabriel, K. and R. M. Goldstein, "Crossed orbit interferometry: Theory and experimental results from SIR-B," Int. J. Remote Sens., Vol. 9, No. 5, 857-872, Sep. 1988.
doi:10.1080/01431168808954901

10. Natsuaki, R. and A. Hirose, "SPEC method --- A fine coregistration method for SAR interferometry," IEEE Trans. Geosci Remote Sens., Vol. 49, No. 1, 28-37, 2011.
doi:10.1109/TGRS.2010.2057435

11. Li, D. and Y. H. Zhang, "A fast offset estimation approach for InSAR image subpixel registration," IEEE Geosci Remote Sens Letters., Vol. 9, No. 2, 267-271, 2011.
doi:10.1109/LGRS.2011.2166752

12. Lowe, D. G., "Object recognition from local scale-invariant features," IEEE International Conference on Computer Vision, Vol. 2, 1150-1157, Kerkyra, Greece, Sep. 20-27, 1999.

13. Lowe, D. G., "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., Vol. 60, No. 2, 91-110, 2004.
doi:10.1023/B:VISI.0000029664.99615.94

14. Fischler, M. A. and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM, Vol. 24, No. 6, 381-395, 1981.
doi:10.1145/358669.358692

15. Schwind, P., S. Suri, P. Reinartz, and A. Siebert, "Applicability of the SIFT operator for geometrical SAR image registration," Int. J. Remote Sens., Vol. 31, No. 8, 1959-1980, 2010.
doi:10.1080/01431160902927622

16. Morel, J. M. and G. S. Yu, "ASIFT: A new framework for fully affine invariant image comparison," SIAM J. Imag. Sci., Vol. 2, No. 2, 438-469, 2009.
doi:10.1137/080732730

17. Li, Q. L., G. Y. Wang, J. G. Liu, and S. B. Chen, "Robust scale-invariant feature matching for remote sensing image registration," EEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 287-291, 2009.
doi:10.1109/LGRS.2008.2011751

18. Suri, S., P. Schwind, J. Uhl, and P. Reinartz, "Modifications in the SIFT operator for effective SAR image matching," nt. J. Image Data Fus., Vol. 1, No. 3, 243-256, 2010.
doi:10.1080/19479832.2010.495322

19. Wang, S., H. You, and K. Fu, "BFSIFT: A novel method to find feature matches for SAR image registration," IEEE Trans. Geosci. Remote Sens., Vol. 9, No. 4, 649-653, 2012.
doi:10.1109/LGRS.2011.2177437

20. Goncalves, H., L. Corte-Real, and J. Goncalves, "Automatic image registration through image segmentation and SIFT," IEEE Trans. Geosci Remote Sens., Vol. 49, No. 7, 2589-2600, 2011.
doi:10.1109/TGRS.2011.2109389

21. Goldstein, R. M., H. A. Zebker, and C. L.Werner, "Satellite radar interferometry: Two-dimensional phase unwrapping," Radio Science, Vol. 23, No. 4, 713-720, 1988.
doi:10.1029/RS023i004p00713

22. Guarnier, M. I. and C. Prati, "A quick and dirty coherence estimator for data browsing," IEEE Trans. Geosci. Remote Sensing, Vol. 35, 660-669, May 1997.
doi:10.1109/36.581984