Vol. 52
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-12-09
Alternative Representation of Green's Function for Electric Field on Surfaces of Thin Vibrators
By
Progress In Electromagnetics Research M, Vol. 52, 169-179, 2016
Abstract
An alternative representation of a Green function for electric fields on surfaces of thin impedance vibrators is proposed. The representation can be applied in software packages for simulation of RF and microwave devices. Advantages of the approach were demonstrated by analyzing the well-known problem of a thin symmetrical horizontal vibrator above a perfectly conducting plane. For a half-wave vibrator, numerical estimates of an effective external induced impedance were made for various distances between the vibrator and the plane. A possibility to realize a distribution of intrinsic impedance on the vibrator capable to compensate of the plane influence was also analyzed.
Citation
Yuriy M. Penkin Viktor A. Katrich Mikhail Nesterenko , "Alternative Representation of Green's Function for Electric Field on Surfaces of Thin Vibrators," Progress In Electromagnetics Research M, Vol. 52, 169-179, 2016.
doi:10.2528/PIERM16102604
http://www.jpier.org/PIERM/pier.php?paper=16102604
References

1. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova dumka, Kiev, 1986 (in Russian).

2. Levin, H. and J. Schwinger, "On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen," Commun. Pure Appl. Math., 355-391, 1950.
doi:10.1002/cpa.3160030403

3. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

4. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

5. Van Bladel, J., "Some remarks on Green’s dyadic for infinite space," IRE Trans. Antennas and Propagat., Vol. 9, 563-566, 1961.
doi:10.1109/TAP.1961.1145064

6. Markov, G. T. and B. A. Panchenko, "Tensor Green functions of rectangular waveguides and resonators," Izvestiya Vuzov, Radiotechnika, Vol. 7, 34-41, 1964 (in Russian).

7. Tai, C. T., Dyadic Green’s Function in Electromagnetic Theory, Intex Educ. Publ., Scranton, 1971.

8. Tikhonov, A. N. and A. A. Samarsky, Equations of Mathematical Physics, Nauka, Moscow, 1977 (in Russian).

9. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Inc., New Jersey, 1973.

10. Penkin, Yu. M. and V. A. Katrich, Excitation of Electromagnetic Waves in the Volumes with Coordinate Boundaries, Fakt, Kharkov, 2003 (in Russian).

11. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamic volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203

12. Nesterenko, M. V., D. Yu. Penkin, V. A. Katrich, and V. M. Dakhov, "Equation solution for the current in radial impedance monopole on the perfectly conducting sphere," Progress In Electromagnetics Research B, Vol. 19, 95-114, 2010.
doi:10.2528/PIERB09111105

13. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.

14. Vasylchenko, A., Y. Schols, W. De Raedt, and G. A. E. Vandenbosch, "A benchmarking of six software packages for full-wave analysis of microstrip antennas," Proceeding of the 2nd European Conference on Antennas and Propagation, EuCAP'2007, Edinburgh, UK, Nov. 11-16, 2007.

15. Ansoft Corporation, HFSS v. 10.1.1 User Manual, Jul. 2006, http://www.ansoft.com.

16. CST GmbH., CST Microwave Studio v. 2006B, www.cts.com.

17. Agilent Technologies, EEsof EDA, Momentum, http://eesof.tm.agilent.com/products/momentum_main.html.

18. EMSS - EM Software & Systems Ltd, FEKO Suite 5.2 User Manual, Jan. 2006, http:Hwww.emss.co.za.

19. Zeland Software, Inc., IE3D v. 11.2 User Manual, Jan. 2006, http: Hwww.zeland.com.

20. Nesterenko, M. V., V. A. Katrich, Yu.M. Penkin, V.M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.
doi:10.1007/978-1-4419-7850-9

21. King, R. W. P., The Theory of Linear Antennas, Harv. Univ. Press, Cambr., MA, 1956.
doi:10.4159/harvard.9780674182189

22. Pocklington, H. C., "Electrical oscillations in wires," Proc. Cambr. Phil. Soc., Vol. 9, Pt. VII, 324-332, 1897.

23. Mittra, R., Computer Techniques for Electromagnetics, Pergamon, New York, 1973.

24. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105

25. Fikioris, G. and T. T. Wu, "On the application of numerical methods to Hallen's equation," IEEE Trans. Antennas Propagat., Vol. 49, 383-392, 2001.
doi:10.1109/8.918612

26. King, R. W. P., G. Fikioris, and R. B. Mack, Cylindrical Antennas and Arrays, Cambridge University Press, Cambridge, UK, 2002.
doi:10.1017/CBO9780511541100

27. King, R. W. P., E. A. Aronson, and C. W. Harrison, "Determination of the admittance and effective length of cylindrical antennas," Radio Science, Vol. 1, No. 7, 835-850, 1966.
doi:10.1002/rds196617835

28. Sommerfeld, L., "Uber die ausbereitung electromagnetisher wellen in der jdrahtlosen telegrafie," Annalen der Physik, Vol. 28, 665, 1919.

29. Markov, G. T. and D. M. Sazonov, Antennas, Energiya, Moscow, 1975 (in Russian).

30. Eisenberg, H., "Short-wave antenna," Radio and Svyaz, Moscow, 1985 (in Russian).

31. Feinberg, E. L., Propagation of Radio Waves over the Earth Surface, Nauka, Moscow, 1999 (in Russian).

32. Balanis, C. A., Modern Antenna Handbook, John Willey & Sons, Hoboken, New Jersey, 2008.
doi:10.1002/9780470294154