Vol. 54
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-12
Calculation of Passive Magnetic Force in a Radial Magnetic Bearing Using General Division Approach
By
Progress In Electromagnetics Research M, Vol. 54, 91-102, 2017
Abstract
This paper represents the force calculation in a radial passive magnetic bearing using Monte Carlo technique with general division approach (s-MC). The expression of magnetic force is obtained using magnetic surface charge density method which incurs a multidimensional integration with complicated integrand. This integration is solved using Monte Carlo technique with 1-division (1-MC) and 2-division (2-MC) approaches with a MATLAB programming. Analysis using established methods such as finite element method (FEM), semi-analytical method, and adaptive Monte Carlo (AMC) method has been carried out to support the proposed technique. Laboratory experiment has been conducted to validate the proposed method. 2-MC gives better result than 1-MC. The computation time of the proposed method is compared with the quadrature method, FEM and AMC. It is observed that the proposed method invites less computational burden than those methods as the algorithm adaptively traverses the domain for promising parts of the domain only, and all the elementary regions are not considered with equal importance.
Citation
Tapan Santra, Debabrata Roy, and Amalendu Bikash Choudhury, "Calculation of Passive Magnetic Force in a Radial Magnetic Bearing Using General Division Approach," Progress In Electromagnetics Research M, Vol. 54, 91-102, 2017.
doi:10.2528/PIERM16120602
References

1. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019

2. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 6, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443

3. Wang, F., J.Wang, Z. Kong, and F. Zhang, "Radial and axial force calculation of BLDC motor with passive magnetic bearing," 4th International Power Electronics and Motion Control Conference, IPEMC 2004, Vol. 1, 290-293, Xi'an, China, Aug. 14–16, 2004.

4. Mukhopadhyay, S. C., T. Ohji, M. Iwahara, and A. Member, "Modeling and control of a new horizontal-shaft hybrid-type magnetic bearing," IEEE Trans. Ind. Electron., Vol. 47, No. 1, 100-108, 2000.
doi:10.1109/41.824131

5. Tan, Q., W. Li, and B. Liu, "Investigations on a permanent magnetic hydrodynamic hybrid journal bearing," Tribol. Int., Vol. 35, No. 7, 443-448, 2002.
doi:10.1016/S0301-679X(02)00026-9

6. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088

7. Bekinal, S. I., A. R. Tumkur Ramakrishna, and S. Jana, "Analysis of axially magnetized permanent magnetic bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910

8. Paden, B., N. Groom, and J. F. Antaki, "Design formulas for permanent-magnet bearings," ASME J. Mech. Des., Vol. 125, No. 3, 734-738, 2003.
doi:10.1115/1.1625402

9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

10. Lijesh, K. P. and H. Hirani, "Development of analytical equations for design and optimization of axially polarized radial passive magnetic bearing," Journal of Tribology, Vol. 137, 011103-9, 2015.

11. Santra, T., D. Roy, and S. Yamada, "Calculation of force between two ring magnets using adaptive Monte Carlo technique with experimental verification," Progress In Electromagnetics Research M, Vol. 49, 181-193, 2016.
doi:10.2528/PIERM16052101

12. Pennanen, T. and M. Koivu, "An adaptive importance sampling technique," Monte Carlo and Quasi-Monte Carlo Methods, 443-455, Springer, 2004.

13. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using coulombian approach for modelling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316

14. Wangsness, R. K., Electromagnetic Fields, Wiley, 1979.

15. Parker, R. J., "Analytical methods for permanent magnet design," Electro-Technology, 1960.

16. Mishra, M. and N. Gupta, "Monte Carlo integration technique for the analysis of electromagnetic Scattering from conducting surfaces," Progress In Electromagnetics Research, Vol. 79, 91-106, 2008.
doi:10.2528/PIER07092005

17. Alrefaei, M. H. and H. M. Abdul-Rahman, "An adaptive Monte Carlo integration algorithm with general division approach," Math. Comput. Simul., 2007, doi:10.1016/j.matcom.2007.09.009.