1. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019 Google Scholar
2. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 6, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443 Google Scholar
3. Wang, F., J.Wang, Z. Kong, and F. Zhang, "Radial and axial force calculation of BLDC motor with passive magnetic bearing," 4th International Power Electronics and Motion Control Conference, IPEMC 2004, Vol. 1, 290-293, Xi'an, China, Aug. 14–16, 2004. Google Scholar
4. Mukhopadhyay, S. C., T. Ohji, M. Iwahara, and A. Member, "Modeling and control of a new horizontal-shaft hybrid-type magnetic bearing," IEEE Trans. Ind. Electron., Vol. 47, No. 1, 100-108, 2000.
doi:10.1109/41.824131 Google Scholar
5. Tan, Q., W. Li, and B. Liu, "Investigations on a permanent magnetic hydrodynamic hybrid journal bearing," Tribol. Int., Vol. 35, No. 7, 443-448, 2002.
doi:10.1016/S0301-679X(02)00026-9 Google Scholar
6. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
7. Bekinal, S. I., A. R. Tumkur Ramakrishna, and S. Jana, "Analysis of axially magnetized permanent magnetic bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910 Google Scholar
8. Paden, B., N. Groom, and J. F. Antaki, "Design formulas for permanent-magnet bearings," ASME J. Mech. Des., Vol. 125, No. 3, 734-738, 2003.
doi:10.1115/1.1625402 Google Scholar
9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102 Google Scholar
10. Lijesh, K. P. and H. Hirani, "Development of analytical equations for design and optimization of axially polarized radial passive magnetic bearing," Journal of Tribology, Vol. 137, 011103-9, 2015. Google Scholar
11. Santra, T., D. Roy, and S. Yamada, "Calculation of force between two ring magnets using adaptive Monte Carlo technique with experimental verification," Progress In Electromagnetics Research M, Vol. 49, 181-193, 2016.
doi:10.2528/PIERM16052101 Google Scholar
12. Pennanen, T. and M. Koivu, "An adaptive importance sampling technique," Monte Carlo and Quasi-Monte Carlo Methods, 443-455, Springer, 2004. Google Scholar
13. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using coulombian approach for modelling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316 Google Scholar
14. Wangsness, R. K., Electromagnetic Fields, Wiley, 1979.
15. Parker, R. J., "Analytical methods for permanent magnet design," Electro-Technology, 1960. Google Scholar
16. Mishra, M. and N. Gupta, "Monte Carlo integration technique for the analysis of electromagnetic Scattering from conducting surfaces," Progress In Electromagnetics Research, Vol. 79, 91-106, 2008.
doi:10.2528/PIER07092005 Google Scholar
17. Alrefaei, M. H. and H. M. Abdul-Rahman, "An adaptive Monte Carlo integration algorithm with general division approach," Math. Comput. Simul., 2007, doi:10.1016/j.matcom.2007.09.009. Google Scholar