Vol. 69
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-18
Wideband Radar Cross Section Reduction Using Artificial Magnetic Conductor Checkerboard Surface
By
Progress In Electromagnetics Research M, Vol. 69, 171-183, 2018
Abstract
This paper presents a combinatorial triangle type artificial magnetic conductor checkerboard surface for wideband radar cross section reduction. The structure consists of a combination of a single band and dual band AMC unit cells with 180±370 phase difference from 4.06 GHZ to 11.2 GHz. 10 dB RCS reduction compared to PEC surface is realized from 4.4 GHz to 11.68 GHz (91%) for the proposed structure. The performance of the structure is compared with the conventional checkerboard surface. The distribution of scattered fields from both the structures are analyzed using array theory. The angular stability of the structures are also studied for TE and TM polarized wave incidences. A prototype of the proposed structure is fabricated, and the measured data are in good agreement with simulated results.
Citation
Vadakkekalathil Libi Mol, and Aanandan Chandroth, "Wideband Radar Cross Section Reduction Using Artificial Magnetic Conductor Checkerboard Surface," Progress In Electromagnetics Research M, Vol. 69, 171-183, 2018.
doi:10.2528/PIERM18030303
References

1. Knott, E. F., M. T. Tuley, and J. F. Shaeffer, Radar Cross Section, 2nd Ed., SciTech Publishing, Inc., Raleigh, NC, USA, 2004.

2. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovicth, "High impedance electromagnetic surfaces in a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

3. Tran, H. H. and I. Park, "Wideband circularly polarized low-profile antenna using artificial magnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 7, 889-897, 2016.
doi:10.1080/09205071.2016.1164629

4. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

5. Costa, F. and A. Monorchio, "Electromagnetic absorbers on high impedance surfaces: From ultra narrowband to ultra wideband absorption," Advanced Electromagnetics, Vol. 1, No. 3, 7, Oct. 2012.
doi:10.7716/aem.v1i3.22

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 23, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

7. Fernandez Alvarez, H., et al. "A six-fold symmetric metamaterial absorber," Materials, Vol. 8, No. 4, 1590-1603, 2015.
doi:10.3390/ma8041590

8. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using doublesquare- loop array," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6022-6029, Dec. 2013.
doi:10.1109/TAP.2013.2280836

9. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012.

10. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, Dec. 2007.
doi:10.1109/TAP.2007.910306

11. Galarregui, J. C. I., A. T. Pereda, J. L. M. De Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, "Broad band radar cross section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, Dec. 2013.

12. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checker board EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, Jun. 2015.

13. Chen, W., C. A. Balanis, and C. R. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4133-4138, Sept. 2016.
doi:10.1109/TAP.2016.2583505

14. Hong, T., H. Dong, J. Wang, H. Ning, Y. Wei, and L. Mao, "A novel combinatorial triangle-type AMC structure for RCS reduction," Microw. Opt. Technol. Lett., Vol. 57, 2728-2732, 2015.
doi:10.1002/mop.29427

15. Zhuang, Y.-Q., G.-M. Wang, and H.-X. Xu, "Ultra-wideband RCS reduction using novel configured chessboard metasurface," Chinese Physics B, Vol. 26, No. 5, 054101, 2017.
doi:10.1088/1674-1056/26/5/054101

16. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, 1-9, 2014.

17. Liu, X., J. Gao, L. Xu, X. Cao, Y. Zhao, and S. Li, "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2017.
doi:10.1109/LAWP.2016.2601108

18. Han, T., X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, "A coding metasurface with properties of absorption and diffusion for RCS reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.
doi:10.2528/PIERC17041201

19. Zhuang, Y., et al. "Random combinatorial gradient metasurface for broadband, wide-angle and polarization-independent diffusion scattering," Scientific Reports, Vol. 7, Article number: 16560, 2017.

20. Costa, F., A. Monorchio, and G. Manara, "Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries," Scientific Reports, Vol. 6, 25458, 2016.
doi:10.1038/srep25458

21. Zheng, Q., Y. Li, J. Zhang, et al. "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scientific Reports, Vol. 7, 43543, 2017.
doi:10.1038/srep43543

22. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017.
doi:10.1109/TAP.2017.2734069

23. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

24. De Cos, M. E., Y. Alvarez-Lopez, and F. Las Heras Andres, "On the influence of coupling AMC resonances for RCS reduction in the SHF band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.
doi:10.2528/PIER11040103

25. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, Hoboken, NJ, USA, 2005.

26. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346

27. De Cos, M. E. and F. Las-Heras, "On the advantages of loop-based unit-cell’s metallization regarding the angular stability of artificial magnetic conductors," Applied Physics A, Vol. 118, No. 2, 699-708, 2015.
doi:10.1007/s00339-014-8782-8

28. Alvarez, Y., M. E. de Cos, and F. Las-Heras, "RCS measurement setup for periodic-structure prototype characterization," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 100-106, Jun. 2010.
doi:10.1109/MAP.2010.5586586