1. Knott, E. F., M. T. Tuley, and J. F. Shaeffer, Radar Cross Section, 2nd Ed., SciTech Publishing, Inc., Raleigh, NC, USA, 2004.
2. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovicth, "High impedance electromagnetic surfaces in a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001 Google Scholar
3. Tran, H. H. and I. Park, "Wideband circularly polarized low-profile antenna using artificial magnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 7, 889-897, 2016.
doi:10.1080/09205071.2016.1164629 Google Scholar
4. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528 Google Scholar
5. Costa, F. and A. Monorchio, "Electromagnetic absorbers on high impedance surfaces: From ultra narrowband to ultra wideband absorption," Advanced Electromagnetics, Vol. 1, No. 3, 7, Oct. 2012.
doi:10.7716/aem.v1i3.22 Google Scholar
6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 23, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
7. Fernandez Alvarez, H., et al. "A six-fold symmetric metamaterial absorber," Materials, Vol. 8, No. 4, 1590-1603, 2015.
doi:10.3390/ma8041590 Google Scholar
8. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using doublesquare- loop array," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6022-6029, Dec. 2013.
doi:10.1109/TAP.2013.2280836 Google Scholar
9. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012. Google Scholar
10. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, Dec. 2007.
doi:10.1109/TAP.2007.910306 Google Scholar
11. Galarregui, J. C. I., A. T. Pereda, J. L. M. De Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, "Broad band radar cross section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, Dec. 2013. Google Scholar
12. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checker board EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, Jun. 2015. Google Scholar
13. Chen, W., C. A. Balanis, and C. R. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4133-4138, Sept. 2016.
doi:10.1109/TAP.2016.2583505 Google Scholar
14. Hong, T., H. Dong, J. Wang, H. Ning, Y. Wei, and L. Mao, "A novel combinatorial triangle-type AMC structure for RCS reduction," Microw. Opt. Technol. Lett., Vol. 57, 2728-2732, 2015.
doi:10.1002/mop.29427 Google Scholar
15. Zhuang, Y.-Q., G.-M. Wang, and H.-X. Xu, "Ultra-wideband RCS reduction using novel configured chessboard metasurface," Chinese Physics B, Vol. 26, No. 5, 054101, 2017.
doi:10.1088/1674-1056/26/5/054101 Google Scholar
16. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, 1-9, 2014. Google Scholar
17. Liu, X., J. Gao, L. Xu, X. Cao, Y. Zhao, and S. Li, "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2017.
doi:10.1109/LAWP.2016.2601108 Google Scholar
18. Han, T., X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, "A coding metasurface with properties of absorption and diffusion for RCS reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.
doi:10.2528/PIERC17041201 Google Scholar
19. Zhuang, Y., et al. "Random combinatorial gradient metasurface for broadband, wide-angle and polarization-independent diffusion scattering," Scientific Reports, Vol. 7, Article number: 16560, 2017. Google Scholar
20. Costa, F., A. Monorchio, and G. Manara, "Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries," Scientific Reports, Vol. 6, 25458, 2016.
doi:10.1038/srep25458 Google Scholar
21. Zheng, Q., Y. Li, J. Zhang, et al. "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scientific Reports, Vol. 7, 43543, 2017.
doi:10.1038/srep43543 Google Scholar
22. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017.
doi:10.1109/TAP.2017.2734069 Google Scholar
23. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402 Google Scholar
24. De Cos, M. E., Y. Alvarez-Lopez, and F. Las Heras Andres, "On the influence of coupling AMC resonances for RCS reduction in the SHF band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.
doi:10.2528/PIER11040103 Google Scholar
25. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, Hoboken, NJ, USA, 2005.
26. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346 Google Scholar
27. De Cos, M. E. and F. Las-Heras, "On the advantages of loop-based unit-cell’s metallization regarding the angular stability of artificial magnetic conductors," Applied Physics A, Vol. 118, No. 2, 699-708, 2015.
doi:10.1007/s00339-014-8782-8 Google Scholar
28. Alvarez, Y., M. E. de Cos, and F. Las-Heras, "RCS measurement setup for periodic-structure prototype characterization," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 100-106, Jun. 2010.
doi:10.1109/MAP.2010.5586586 Google Scholar