Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-25
A Dimensionality Reduction MUSIC Method for Joint DOA and Polarization Estimation in the PRDRF System Using SSSC-EVSA
By
Progress In Electromagnetics Research M, Vol. 75, 39-48, 2018
Abstract
Traditional long vector-based MUSIC methods require 4D spectral search, which suffers from heavy computational complexity. This paper develops a joint DOA and polarization estimation method named as dimensionality reduction MUSIC (DR-MUSIC) method for a passive radar direction finding (PRDRF) system using spatially separated single-component circular electromagnetic vector sensor array (SSSC-EVSA), where 4D spectral search is transformed into 2D spectral search by exploiting rank deficiency of the signal component of cost function. Polarization parameters are estimated via the generalized eigenvector of matrix pencil, which can be utilized for the recognition of radar and decoy. In addition, the estimation performance of the proposed DR-MUSIC method is also studied considering the phase inconsistency among multi-channels. Simulation results demonstrate the effectiveness of the DR-MUSIC method.
Citation
Pinjiao Zhao, Guobing Hu, and Liwei Wang, "A Dimensionality Reduction MUSIC Method for Joint DOA and Polarization Estimation in the PRDRF System Using SSSC-EVSA," Progress In Electromagnetics Research M, Vol. 75, 39-48, 2018.
doi:10.2528/PIERM18091201
References

1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
doi:10.1109/79.526899

2. Wu, X., W. P. Zhu, and J. Yan, "A high-resolution DOA estimation method with a family of nonconvex penalties," IEEE Transactions on Vehicular Technology, Vol. 67, No. 6, 4925-4938, 2018.
doi:10.1109/TVT.2018.2817638

3. Dong, W., M. Diao, and L. Gao, "The direction-of-arrival and polarization estimation using coprime array: A reconstructed covariance matrix approach," Progress In Electromagnetics Research C, Vol. 84, 23-33, 2018.
doi:10.2528/PIERC18032008

4. Zhao, P., W. Si, G. Hu, et al. "DOA estimation for a mixture of uncorrelated and coherent sources based on hierarchical sparse bayesian inference with a Gauss-Exp-Chi 2 prior," International Journal of Antennas and Propagation, Vol. 2018, No. 6, 1-12, 2018.

5. Si, W., P. Zhao, and Z. Qu, "Two-dimensional DOA and polarization estimation for a mixture of uncorrelated and coherent sources with sparsely-distributed vector sensor array," Sensors, Vol. 16, No. 6, 789, 2016.
doi:10.3390/s16060789

6. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

7. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

8. Wong, K. T. and M. D. Zoltowski, "Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations," IEEE Transactions on Antennas & Propagation, Vol. 48, No. 5, 671-681, 2000.
doi:10.1109/8.855485

9. Wong, K. T., L. Li, and M. D. Zoltowski, "Root-MUSIC-based direction-finding and polarization estimation using diversely polarized possibly collocated antennas," IEEE Antennas & Wireless Propagation Letters, Vol. 3, No. 1, 129-132, 2004.
doi:10.1109/LAWP.2004.831083

10. Wong, K. T. and M. D. Zoltowski, "Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace," IEEE Transactions on Antennas & Propagation, Vol. 48, No. 8, 1235-1245, 2000.
doi:10.1109/8.884492

11. Zheng, G., "A novel spatially spread electromagnetic vector sensor for high-accuracy 2-D DOA estimation," Multidimensional Systems and Signal Processing, Vol. 28, No. 1, 23-48, 2017.
doi:10.1007/s11045-015-0327-6

12. Li, B., W. Bai, and G. Zheng, "Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar," IEEE Access, Vol. 6, 36376-36382, 2018.
doi:10.1109/ACCESS.2018.2844948

13. Villano, M., F. Colone, and P. Lombardo, "Antenna array for passive radar: Configuration design and adaptive approaches to disturbance cancellation," International Journal of Antennas and Propagation, Vol. 2013, No. 3, 1380-1383, Oct. 27, 2013.

14. Guo, W., M. Yang, B. Chen, et al. "Joint DOA and polarization estimation using MUSIC method in polarimetric MIMO radar," IET International Conference on Radar Systems, 1-4, 2012.

15. Miron, S., N. Le Bihan, and J. I. Mars, "Vector-sensor MUSIC for polarized seismic sources localization," EURASIP Journal on Applied Signal Processing, 74-84, 2005.

16. Liu, S., L. Yang, and S. Yang, "Robust joint calibration of mutual coupling and channel gain/phase inconsistency for uniform circular array," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 1191-1195, 2016.
doi:10.1109/LAWP.2015.2499280

17. Yuan, X., "Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor," IEEE Transactions on Signal Processing, Vol. 60, No. 3, 1270-1282, 2012.
doi:10.1109/TSP.2011.2177263