1. Xiao, M., S. Mumtaz, Y. Huang, et al. "Millimeter wave communications for future mobile networks," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 9, 1909-1935, Sep. 2017. Google Scholar
2. Niu, Y., Y. Li, D. Jin, et al. "A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, Apr. 2015. Google Scholar
3. Andrews, J. G., T. Bai, M. N. Kulkarni, et al. "Modeling and analyzing millimeter wave cellular systems," IEEE Transactions on Communications, Vol. 65, No. 1, 403-430, Jan. 2017. Google Scholar
4. Zhang, J. A., X. J. Huang, V. Dyadyuk, and Y. J. Guo, "Massive hybrid antenna array for millimeter wave cellular communications," IEEE Wireless Communications, Vol. 22, No. 1, 79-87, Feb. 2015. Google Scholar
5. Mohammad, A., B. S. Virdee, A. Ali, and E. Limiti, "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, Feb. 2018. Google Scholar
6. Mohammad, A., B. S. Virdee, P. Shukla, et al. "Interaction between closely packed array antenna elements using meta-surface for applications such as mimo systems and synthetic aperture radars," Radio Science, Vol. 53, No. 11, 1368-1381, Nov. 2018. Google Scholar
7. Mohammad, A., B. S. Virdee, C. H. See, et al. "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas and Propagation, Vol. 12, No. 14, 2241-2247, Nov. 28, 2018. Google Scholar
8. Mohammad, A., B. S. Virdee, P. Shukla, et al. "Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018. Google Scholar
9. Mohammad, A., M. N.-M. Mohammad, R. A. Sadeghzadeh, et al. "Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," International Journal of Electronics and Communications, Vol. 70, No. 12, 1645-1650, Dec. 2016. Google Scholar
10. Mohammad, A., M. N.-M. Mohammad, R. A. Sadeghzadeh, et al. "New CRLH-based planar slotted antennas with Helical inductors for wireless communication systems, RF-circuits and microwave devices at UHF-SHF bands," Wireless Personal Communications, Vol. 92, No. 3, 1029-1038, Feb. 2017. Google Scholar
11. Mohammad, A., E. Limiti, M. N.-M. Mohammad, and et. al., "A new wideband planar antenna with band-notch functionality at GPS, bluetooth and WiFi bands for integration in portable wireless systems," International Journal of Electronics and Communications, Vol. 72, 79-85, Feb. 2017. Google Scholar
12. Mohammad, A., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturized planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas and Propagation, Vol. 12, No. 7, 1080-1086, Jun. 13, 2018. Google Scholar
13. Massimo, M. D., M. Toshifumi, and M. M. Hanifbhai, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018. Google Scholar
14. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012. Google Scholar
15. Mesleh, R. Y., H. Haas, S. Sinanovic, et al. "Spatial modulation," IEEE Transactions Veh. Technol., Vol. 57, No. 4, 2228-2241, Jul. 2008. Google Scholar
16. Di Renzo, M., H. Haas, A. Ghrayeb, et al. "Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation," Proc. IEEE, Vol. 102, No. 1, 56-103, Jan. 2014. Google Scholar
17. He, L., J. Wang, C. Zhang, and J. Song, "Improving the performance of spatial modulation by phase-only pre-scaling," Proc. IEEE Int. Conf. Communications (ICC), 3210-3215, London, U.K., Jun. 2015. Google Scholar
18. Li, X. and L. Wang, "High rate space-time block coded spatial modulation with cyclic structure," IEEE Communications Lett., Vol. 18, No. 4, 532-535, Apr. 2014. Google Scholar
19. Stavridis, A., S. Sinanovic, M. D. Renzo, and H. Haas, "Transmit precoding for receive spatial modulation using imperfect channel knowledge," Proc. IEEE 75th Veh. Technol. Conf. (VTC Spring), 1-5, Yokohama, Japan, May 2012. Google Scholar
20. Nusenu, S. Y. and W. Q. Wang, "Range-dependent spatial modulation using frequency diverse array for OFDM wireless communications," IEEE Trans. Veh. Technol., Vol. 67, No. 11, 10886-10895, 2018. Google Scholar
21. Hong, Y.-W. P., P.-C. Lan, and C.-C. J. Kuo, "Enhancing physical layer secrecy in multiantenna wireless systems: An overview of signal processing approaches," IEEE Signal Process. Mag., Vol. 30, No. 5, 29-40, Aug. 2013. Google Scholar
22. Zou, Y. and J. Zhu, Physical Layer Security for Cooperative Relay Networks, Springer, 2016.
23. Trappe, W., "The challenges facing physical layer security," IEEE Commun. Mag., Vol. 53, No. 6, 16-20, Jun. 2015. Google Scholar
24. Xiong, Q., Y. Gong, and Y.-C. Liang, "Achieving secrecy capacity of MISO fading wiretap channels with artificial noise," Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 1-5, Shanghai, China, Apr. 2013. Google Scholar
25. Sun, L., P. Ren, Q. Du, et al. "Security-aware relaying scheme for cooperative networks with untrusted relay nodes," IEEE Commun. Lett., Vol. 19, No. 3, 463-466, Mar. 2015. Google Scholar
26. Guan, X., Y. Cai, and W. Yang, "On the mutual information and precoding for spatial modulation with finite alphabet," IEEE Wireless Commun. Lett., Vol. 2, No. 4, 383-386, Aug. 2013. Google Scholar
27. Yang, L.-L., "Transmitter preprocessing aided spatial modulation for multiple-input multiple-output systems," Proc. IEEE Veh. Technol. Conf. (VTC-Spring), 1-5, Budapest, Hungary, May 2011. Google Scholar
28. Wu, F., R. Zhang, L.-L. Yang, and W. Wang, "Transmitter precoding aided spatial modulation for secrecy communications," IEEE Trans. Veh. Technol., Vol. 65, No. 1, 467-471, Jan. 2016. Google Scholar
29. Wu, F., L. L. Yang, W. Wang, and Z. Kong, "Secret precoding-aided spatial modulation," IEEE Commun. Lett., Vol. 19, No. 9, 1544-1547, Sep. 2015. Google Scholar
30. Wang, L., S. Bashar, Y. Wei, and R. Li, "Secrecy enhancement analysis against unknown eavesdropping in spatial modulation," IEEE Commun. Lett., Vol. 19, No. 8, 1351-1354, Aug. 2015. Google Scholar
31. Chen, Y., L. Wang, Z. Zhao, et al. "Secure multiuser MIMO downlink transmission via precoding-aided spatial modulation," IEEE Commun. Lett., Vol. 20, No. 6, 1116-1119, Jun. 2016. Google Scholar
32. Mesleh, R., S. S. Ikki, and H. M. Aggoune, "Quadrature spatial modulation," IEEE Trans. Veh. Technol., Vol. 64, No. 6, 2738-2742, Jun. 2015. Google Scholar
33. Huang, Z., Z. Gao, and L. Sun, "Anti-eavesdropping scheme based on quadrature spatial modulation," IEEE Commun. Lett., Vol. 21, No. 3, 532-535, Mar. 2017. Google Scholar
34. Ju, Y., H.-M. Wang, T.-X. Zheng, and Q. Yin, "Secure transmissions in millimeter wave systems," IEEE Transactions on Communications, Vol. 65, No. 5, 2114-2127, May 2017. Google Scholar
35. Lin, J., Q. Li, J. Yang, et al. "Physical-layer security for proximal legitimate user and eavesdropper: A frequency diverse array beamforming approach," IEEE Transactions on Information Forensics And Security, Vol. 13, No. 3, 671-684, Mar. 2018. Google Scholar
36. Fusco, V. and N. Buchanan, "Developments in retrodirective array technology," IET Microw., Antennas Propag., Vol. 7, No. 2, 131-140, May 2013. Google Scholar
37. Ding, Y. and V. F. Fusco, "A synthesis-free directional modulation transmitter using retrodirective array," IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 428-441, Mar. 2017. Google Scholar
38. Yao, A.-M., W. Wu, and D.-G. Fang, "Frequency diverse array phase conjugating retrodirective array with simultaneous range-focusing capability for multi-targets," Proceedings of the Asia-Pacific Microwave Conference, 1-3, Nanjing, China, Dec. 2015. Google Scholar
39. Wang, W. Q., "Retrodirective frequency diverse array focusing for wireless information and power transfer," IEEE Journal on Selected Areas in Communications, Vol. 37, No. 1, 61-73, 2019. Google Scholar
40. Mesleh, R. and S. Ikki, "On the impact of imperfect channel knowledge on the performance of quadrature spatial modulation," Proc. IEEE Wireless Communications and Networking Conference (WCNC), 534-538, Mar. 2015. Google Scholar
41. Younis, A., R. Mesleh, and H. Haas, "Quadrature spatial modulation performance over Nakagamim fading channels," IEEE Trans. on Veh. Tech., Vol. 65, No. 12, 10227-10231, Dec. 2016. Google Scholar
42. Afana, A., R. Mesleh, S. Ikki, and I. Atawi, "Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying," IEEE Commun. Lett., Vol. 20, No. 2, 240-243, Feb. 2016. Google Scholar
43. Shu, F., Z.Wang, R. Chen, et al. "Two high-performance schemes of transmit antenna selection for secure spatial modulation," IEEE Transactions on Vehicular Technology, Vol. 67, No. 9, 8969-8973, Sep. 2018. Google Scholar
44. Golomb, S. W. and H. Taylor, "Constructions and properties of Costas arrays," Proceedings of the IEEE, Vol. 72, No. 9, 1143-1163, Sep. 1984. Google Scholar
45. Levanon, N. and E. Mozeson, Radar Signals, John Wiley and Sons, Inc., 2004.
46. Buchanan, N. B., V. F. Fusco, and M. Van Der Vorst, "Phase conjugating circuit with frequency offset beam pointing error correction facility for precision retrodirective antenna applications," Proceedings of the 41st European Microwave Conference, 1281-1283, Manchester, UK, Oct. 2011. Google Scholar
47. Wyner, A. D., "The wire-tap channel," Bell Syst. Tech. J., Vol. 54, No. 8, 1355-1387, Oct. 1975. Google Scholar
48. He, B., X. Zhou, and A. Lee Swindlehurst, "On secrecy metrics for physical layer security over quasi-static fading channels," IEEE Transactions On Wireless Communications, Vol. 15, No. 10, 6913-6924, Oct. 2016. Google Scholar
49. Zhou, X., M. R. McKay, B. Maham, and A. Hjungnes, "Rethinking the secrecy outage formulation: A secure transmission design perspective," IEEE Commun. Lett., Vol. 15, No. 3, 302-304, Mar. 2011. Google Scholar