Vol. 80
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-11
Energy-Efficient Coding Matrix FMD-RDA Secure Transmission Scheme Based on Quadrature Spatial Modulation for mmWave Systems
By
Progress In Electromagnetics Research M, Vol. 80, 133-143, 2019
Abstract
Artificial noise (AN) aided method in mmWave is hard to realize due to large transmit antennas and also requires additional power. This paper proposes coding matrix secure transmission based on quadrature spatial modulation (QSM) utilizing a frequency modulated diverse retrospective array (FMD-RDA). Specifically, we adopt coding matrix for frequency increment with QSM symbols to form part of FMD-RDA angular-range array factor. Consequently, low probability of detection (LPD) is created during the QSM transmission without additional power. The desired receiver should know the particular coding matrix a priori. Importantly, the system has automatic user tracking ability with no channel state information (CSI) needed at the desired receiver and can handle receivers with highly correlated channels. Further, secrecy outage probability (SOP), asymptotic lower bound on eavesdropper's (Eve's) detecting error probability and average data leakage rate are analyzed without Eve's CSI. Simulation results show that increasing the coding matrix, satisfactory secrecy is attained for the proposed scheme. Moreover, through the results certain essential secrecy information has been highlighted that is not captured by the classical SOP making the proposed scheme an attractive technique for QSM applications.
Citation
Shaddrack Yaw Nusenu, and Abdul Basit, "Energy-Efficient Coding Matrix FMD-RDA Secure Transmission Scheme Based on Quadrature Spatial Modulation for mmWave Systems," Progress In Electromagnetics Research M, Vol. 80, 133-143, 2019.
doi:10.2528/PIERM19021403
References

1. Xiao, M., S. Mumtaz, Y. Huang, et al. "Millimeter wave communications for future mobile networks," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 9, 1909-1935, Sep. 2017.

2. Niu, Y., Y. Li, D. Jin, et al. "A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, Apr. 2015.

3. Andrews, J. G., T. Bai, M. N. Kulkarni, et al. "Modeling and analyzing millimeter wave cellular systems," IEEE Transactions on Communications, Vol. 65, No. 1, 403-430, Jan. 2017.

4. Zhang, J. A., X. J. Huang, V. Dyadyuk, and Y. J. Guo, "Massive hybrid antenna array for millimeter wave cellular communications," IEEE Wireless Communications, Vol. 22, No. 1, 79-87, Feb. 2015.

5. Mohammad, A., B. S. Virdee, A. Ali, and E. Limiti, "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, Feb. 2018.

6. Mohammad, A., B. S. Virdee, P. Shukla, et al. "Interaction between closely packed array antenna elements using meta-surface for applications such as mimo systems and synthetic aperture radars," Radio Science, Vol. 53, No. 11, 1368-1381, Nov. 2018.

7. Mohammad, A., B. S. Virdee, C. H. See, et al. "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas and Propagation, Vol. 12, No. 14, 2241-2247, Nov. 28, 2018.

8. Mohammad, A., B. S. Virdee, P. Shukla, et al. "Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.

9. Mohammad, A., M. N.-M. Mohammad, R. A. Sadeghzadeh, et al. "Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," International Journal of Electronics and Communications, Vol. 70, No. 12, 1645-1650, Dec. 2016.

10. Mohammad, A., M. N.-M. Mohammad, R. A. Sadeghzadeh, et al. "New CRLH-based planar slotted antennas with Helical inductors for wireless communication systems, RF-circuits and microwave devices at UHF-SHF bands," Wireless Personal Communications, Vol. 92, No. 3, 1029-1038, Feb. 2017.

11. Mohammad, A., E. Limiti, M. N.-M. Mohammad, and et. al., "A new wideband planar antenna with band-notch functionality at GPS, bluetooth and WiFi bands for integration in portable wireless systems," International Journal of Electronics and Communications, Vol. 72, 79-85, Feb. 2017.

12. Mohammad, A., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturized planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas and Propagation, Vol. 12, No. 7, 1080-1086, Jun. 13, 2018.

13. Massimo, M. D., M. Toshifumi, and M. M. Hanifbhai, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.

14. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.

15. Mesleh, R. Y., H. Haas, S. Sinanovic, et al. "Spatial modulation," IEEE Transactions Veh. Technol., Vol. 57, No. 4, 2228-2241, Jul. 2008.

16. Di Renzo, M., H. Haas, A. Ghrayeb, et al. "Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation," Proc. IEEE, Vol. 102, No. 1, 56-103, Jan. 2014.

17. He, L., J. Wang, C. Zhang, and J. Song, "Improving the performance of spatial modulation by phase-only pre-scaling," Proc. IEEE Int. Conf. Communications (ICC), 3210-3215, London, U.K., Jun. 2015.

18. Li, X. and L. Wang, "High rate space-time block coded spatial modulation with cyclic structure," IEEE Communications Lett., Vol. 18, No. 4, 532-535, Apr. 2014.

19. Stavridis, A., S. Sinanovic, M. D. Renzo, and H. Haas, "Transmit precoding for receive spatial modulation using imperfect channel knowledge," Proc. IEEE 75th Veh. Technol. Conf. (VTC Spring), 1-5, Yokohama, Japan, May 2012.

20. Nusenu, S. Y. and W. Q. Wang, "Range-dependent spatial modulation using frequency diverse array for OFDM wireless communications," IEEE Trans. Veh. Technol., Vol. 67, No. 11, 10886-10895, 2018.

21. Hong, Y.-W. P., P.-C. Lan, and C.-C. J. Kuo, "Enhancing physical layer secrecy in multiantenna wireless systems: An overview of signal processing approaches," IEEE Signal Process. Mag., Vol. 30, No. 5, 29-40, Aug. 2013.

22. Zou, Y. and J. Zhu, Physical Layer Security for Cooperative Relay Networks, Springer, 2016.

23. Trappe, W., "The challenges facing physical layer security," IEEE Commun. Mag., Vol. 53, No. 6, 16-20, Jun. 2015.

24. Xiong, Q., Y. Gong, and Y.-C. Liang, "Achieving secrecy capacity of MISO fading wiretap channels with artificial noise," Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 1-5, Shanghai, China, Apr. 2013.

25. Sun, L., P. Ren, Q. Du, et al. "Security-aware relaying scheme for cooperative networks with untrusted relay nodes," IEEE Commun. Lett., Vol. 19, No. 3, 463-466, Mar. 2015.

26. Guan, X., Y. Cai, and W. Yang, "On the mutual information and precoding for spatial modulation with finite alphabet," IEEE Wireless Commun. Lett., Vol. 2, No. 4, 383-386, Aug. 2013.

27. Yang, L.-L., "Transmitter preprocessing aided spatial modulation for multiple-input multiple-output systems," Proc. IEEE Veh. Technol. Conf. (VTC-Spring), 1-5, Budapest, Hungary, May 2011.

28. Wu, F., R. Zhang, L.-L. Yang, and W. Wang, "Transmitter precoding aided spatial modulation for secrecy communications," IEEE Trans. Veh. Technol., Vol. 65, No. 1, 467-471, Jan. 2016.

29. Wu, F., L. L. Yang, W. Wang, and Z. Kong, "Secret precoding-aided spatial modulation," IEEE Commun. Lett., Vol. 19, No. 9, 1544-1547, Sep. 2015.

30. Wang, L., S. Bashar, Y. Wei, and R. Li, "Secrecy enhancement analysis against unknown eavesdropping in spatial modulation," IEEE Commun. Lett., Vol. 19, No. 8, 1351-1354, Aug. 2015.

31. Chen, Y., L. Wang, Z. Zhao, et al. "Secure multiuser MIMO downlink transmission via precoding-aided spatial modulation," IEEE Commun. Lett., Vol. 20, No. 6, 1116-1119, Jun. 2016.

32. Mesleh, R., S. S. Ikki, and H. M. Aggoune, "Quadrature spatial modulation," IEEE Trans. Veh. Technol., Vol. 64, No. 6, 2738-2742, Jun. 2015.

33. Huang, Z., Z. Gao, and L. Sun, "Anti-eavesdropping scheme based on quadrature spatial modulation," IEEE Commun. Lett., Vol. 21, No. 3, 532-535, Mar. 2017.

34. Ju, Y., H.-M. Wang, T.-X. Zheng, and Q. Yin, "Secure transmissions in millimeter wave systems," IEEE Transactions on Communications, Vol. 65, No. 5, 2114-2127, May 2017.

35. Lin, J., Q. Li, J. Yang, et al. "Physical-layer security for proximal legitimate user and eavesdropper: A frequency diverse array beamforming approach," IEEE Transactions on Information Forensics And Security, Vol. 13, No. 3, 671-684, Mar. 2018.

36. Fusco, V. and N. Buchanan, "Developments in retrodirective array technology," IET Microw., Antennas Propag., Vol. 7, No. 2, 131-140, May 2013.

37. Ding, Y. and V. F. Fusco, "A synthesis-free directional modulation transmitter using retrodirective array," IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 428-441, Mar. 2017.

38. Yao, A.-M., W. Wu, and D.-G. Fang, "Frequency diverse array phase conjugating retrodirective array with simultaneous range-focusing capability for multi-targets," Proceedings of the Asia-Pacific Microwave Conference, 1-3, Nanjing, China, Dec. 2015.

39. Wang, W. Q., "Retrodirective frequency diverse array focusing for wireless information and power transfer," IEEE Journal on Selected Areas in Communications, Vol. 37, No. 1, 61-73, 2019.

40. Mesleh, R. and S. Ikki, "On the impact of imperfect channel knowledge on the performance of quadrature spatial modulation," Proc. IEEE Wireless Communications and Networking Conference (WCNC), 534-538, Mar. 2015.

41. Younis, A., R. Mesleh, and H. Haas, "Quadrature spatial modulation performance over Nakagamim fading channels," IEEE Trans. on Veh. Tech., Vol. 65, No. 12, 10227-10231, Dec. 2016.

42. Afana, A., R. Mesleh, S. Ikki, and I. Atawi, "Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying," IEEE Commun. Lett., Vol. 20, No. 2, 240-243, Feb. 2016.

43. Shu, F., Z.Wang, R. Chen, et al. "Two high-performance schemes of transmit antenna selection for secure spatial modulation," IEEE Transactions on Vehicular Technology, Vol. 67, No. 9, 8969-8973, Sep. 2018.

44. Golomb, S. W. and H. Taylor, "Constructions and properties of Costas arrays," Proceedings of the IEEE, Vol. 72, No. 9, 1143-1163, Sep. 1984.

45. Levanon, N. and E. Mozeson, Radar Signals, John Wiley and Sons, Inc., 2004.

46. Buchanan, N. B., V. F. Fusco, and M. Van Der Vorst, "Phase conjugating circuit with frequency offset beam pointing error correction facility for precision retrodirective antenna applications," Proceedings of the 41st European Microwave Conference, 1281-1283, Manchester, UK, Oct. 2011.

47. Wyner, A. D., "The wire-tap channel," Bell Syst. Tech. J., Vol. 54, No. 8, 1355-1387, Oct. 1975.

48. He, B., X. Zhou, and A. Lee Swindlehurst, "On secrecy metrics for physical layer security over quasi-static fading channels," IEEE Transactions On Wireless Communications, Vol. 15, No. 10, 6913-6924, Oct. 2016.

49. Zhou, X., M. R. McKay, B. Maham, and A. Hjungnes, "Rethinking the secrecy outage formulation: A secure transmission design perspective," IEEE Commun. Lett., Vol. 15, No. 3, 302-304, Mar. 2011.