Vol. 81
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-10
Comparative Study on Sparse and Recovery Algorithms for Antenna Measurement by Compressed Sensing
By
Progress In Electromagnetics Research M, Vol. 81, 149-158, 2019
Abstract
Compressed sensing (CS) is utilized in antenna measurements. The antenna data are compressed using the CS method, and the performances of different sparse and recovery algorithms of CS are used to solve antenna measurements. Experiments are conducted on various types of antennas. The results show that efficiency can be greatly improved by reducing the number of measurement points. The best reconstruction performance is exhibited by the Discrete Wavelet Transform (DWT) algorithm combined with the Compressive Sampling Matching Pursuit (COSAMP) algorithm.
Citation
Liang Zhang, Tianting Wang, Yang Liu, Meng Kong, and Xian-Liang Wu, "Comparative Study on Sparse and Recovery Algorithms for Antenna Measurement by Compressed Sensing," Progress In Electromagnetics Research M, Vol. 81, 149-158, 2019.
doi:10.2528/PIERM19041803
References

1. Duarte, M. F., et al. "Single-pixel imaging via compressive sampling," IEEE Signal Processing Mag., Vol. 25, No. 2, 83-91, 2008.
doi:10.1109/MSP.2007.914730

2. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2007.
doi:10.1002/mrm.21391

3. Paredes, J. L., G. R. Arce, and Z. Wang, "Ultra-wideband compressed sensing: Channel estimation," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 3, 383-395, 2007.
doi:10.1109/JSTSP.2007.906657

4. Bajwa, W., et al. "Compressive wireless sensing," International Conference on Information Processing in Sensor Networks ACM, Vol. 402, No. 2, 134-142, 2006.

5. Chang, J., W. Zhang, S. Zhang, et al. "A novel SAR imaging algorithm based on compressed sensing," IEEE Cie International Conference on Radar, IEEE, 2006.

6. Lin, X. H., G. Y. Xue, and P. Liu, "Novel data acquisition method for interference suppression in dual-channel SAR," Progress In Electromagnetics Research, Vol. 144, 79-92, 2014.
doi:10.2528/PIER13111207

7. Migliore, D. M., "A simple introduction to compressed sensing/sparse recovery with applications in antenna measurements," IEEE Antennas and Propagation Magazine, Vol. 56, No. 2, 14-26, 2014.
doi:10.1109/MAP.2014.6837061

8. Cornelius, R., D. Heberling, N. Koep, et al. "Compressed sensing applied to spherical near-field to far-field transformation," European Conference on Antennas and Propagation, IEEE, 2016.

9. Fuchs, B., L. L. Coq, S. Rondineau, et al. "Fast antenna far-field characterization via sparse spherical harmonic expansion," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 99, 1, 2017.

10. Zhang, L., F. Wang, T. Wang, X. Y. Cao, M. S. Chen, and X. L. Wu, "Fast antenna far-field measurement for sparse sampling technology," Progress In Electromagnetics Research M, Vol. 72, 145-152, 2018.
doi:10.2528/PIERM18042509

11. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

12. Donoho, D. L., Y. Tsaig, I. Drori, et al. "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 58, No. 2, 1094-1121, 2012.
doi:10.1109/TIT.2011.2173241

13. Needell, D. and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal., Vol. 26, No. 3, 301-321, 2008.
doi:10.1016/j.acha.2008.07.002

14. Chartrand, R. and W. Yin, "Iteratively reweighted algorithms for compressive sensing," IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, ICASSP 2008, IEEE, 2008.

15. Huggins, P. S. and S. W. Zucker, "Greedy base pursuit," IEEE Transactions on Signal Processing, Vol. 55, No. 7, 3760-3772, 2007.
doi:10.1109/TSP.2007.894287

16. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

17. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Transactions on Information Theory, Vol. 55, No. 5, 2230-2249, 2008.
doi:10.1109/TIT.2009.2016006

18. Blumensath, T. and M. E. Davies, "Iterative hard thresholding for compressed sensing," Applied & Computational Harmonic Analysis, Vol. 27, No. 3, 265-274, 2008.
doi:10.1016/j.acha.2009.04.002