1. Benford, J., J. A. Swegle, and E. Shamiloglu, High Power Microwaves, Taylor & Francis, 2007.
doi:10.1201/9781420012064
2. Huttlin, G. A., et al. "The reflex-diode HPM source on Aurora," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 618-625, 1990.
doi:10.1109/27.55935 Google Scholar
3. Bugaev, S. P., et al. "Relativistic multiwave cerenkov generators," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 525-536, 1990.
doi:10.1109/27.55924 Google Scholar
4. Efthimion, P., P. R. Smith, and S. P. Schlesinger, "Broad spectral electromagnetic radiation calorimeter: Centimeters to microns," Rev. Sci. Instrum., Vol. 47, No. 9, 1059-1062, 1976.
doi:10.1063/1.1134817 Google Scholar
5. Warton, C. B., L. M. Earley, and W. P. Ballard, "Calorimetric measurements of single-pulse high-power microwaves in oversized waveguides," Rev. Sci. Instrum., Vol. 57, No. 5, 855-858, 1986.
doi:10.1063/1.1138824 Google Scholar
6. Earley, L. M., W. P. Ballard, and L. D. Roose, "Rectangular waveguide calorimeter for single intense microwave pulses," Rev. Sci. Instrum., Vol. 57, No. 9, 2359-2361, 1986.
doi:10.1063/1.1138678 Google Scholar
7. Earley, L. M., et al. "Comprehensive approach for diagnosing intense single-pulse microwave sources," Rev. Sci. Instrum., Vol. 57, No. 9, 2283-2293, 1986.
doi:10.1063/1.1138699 Google Scholar
8. Zaitsev, N. I., et al. "A calorimeter for measuring the energy of a high-power electromagnetic pulse," Instrum. Exp. Tech., Vol. 35, No. 2, 283-284, 1992. Google Scholar
9. Belousov, V. I., et al. "Calorimeter for measuring the total energy of high-power pulse millimeter-range devices," Instrum. Exp. Tech., Vol. 39, No. 3, 402-405, 1996. Google Scholar
10. Belousov, V. I., et al. "A dry overmoded-waveguide calorimeter for measurement of high-power microwave pulse energy," Instrum. Exp. Tech., Vol. 35, No. 3, 482-487, 1992. Google Scholar
11. Bykov, N. M., et al. "Diagnosis of high-power nanosecond pulses of microwave-radiation," Instrum. Exp. Tech., Vol. 30, No. 6(2), 1393-1397, 1987. Google Scholar
12. Klimov, A. I., et al. "A calorimeter for high power microwave pulse measurement," Proceedings of 15th International Symposium on High Current Electronics, 422-424, Tomsk, Russia, 2008. Google Scholar
13. Lisichkin, A. L. and E. V. Nesterov, "Waveguide calorimeter for pulsed microwave radiation in the centimeter wavelength range," Instrum. Exp. Tech., Vol. 41, No. 3, 362-364, 1998. Google Scholar
14. Kiselev, V. A., et al. "A calorimeter with a capacitive probe for measuring microwave energy," Instrum. Exp. Tech., Vol. 48, No. 2, 230-233, 2005.
doi:10.1007/s10786-005-0041-y Google Scholar
15. Lisichkin, A. L., E. V. Nesterov, and V. A. Stroganov, "Calorimeter for pulsed microwave radiation," Instrum. Exp. Tech., Vol. 39, No. 1, 70-72, 1996. Google Scholar
16. Shkvarunets, A. G., "A broadband microwave calorimeter of large cross section," Instrum. Exp. Tech., Vol. 39, No. 4, 535-538, 1996. Google Scholar
17. Lisichkin, A. L., et al. "A liquid pulsed microwave radiation calorimeter," Instrum. Exp. Tech., Vol. 50, No. 1, 82-85, 2007.
doi:10.1134/S0020441207010101 Google Scholar
18. Klimov, A. I., et al. "Measurement of parameters of X-band high-power microwave super radiative pulses," IEEE Trans. Plasma Sci., Vol. 36, No. 3, 661-664, 2008.
doi:10.1109/TPS.2008.917300 Google Scholar
19. Vykhodtsev, P. V., et al. "Liquid calorimeters for measuring the energy of high-power microwave pulses," Instrum. Exp. Tech., Vol. 58, No. 4, 510-514, 2015.
doi:10.1134/S0020441215030264 Google Scholar
20. Teng, Y., et al. "High-efficiency coaxial relativistic backward wave oscillator," Rev. Sci. Instrum., Vol. 82, No. 2, 024701, 2011.
doi:10.1063/1.3536837 Google Scholar
21. Ye, H., et al. "Research on calorimeter for high-power microwave measurements," Rev. Sci. Instrum., Vol. 86, No. 12, 124706, 2015.
doi:10.1063/1.4938160 Google Scholar
22. Klimov, A. I. and V. Yu. Kozhevnikov, "Numerical optimization of aperture absorbing loads of liquid calorimeters for high-power microwave pulses," Rus. Phys. Journ., Vol. 60, No. 8, 1319-1324, 2017.
doi:10.1007/s11182-017-1215-3 Google Scholar
23. Dagys, M., et al. "The resistive sensor: A device for high-power microwave pulsed measurements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 64-79, 2001.
doi:10.1109/74.979368 Google Scholar
24. Ballard, W. P. and L. M. Earley, "Microwave detecting diode rise-time measurements," Rev. Sci. Instrum., Vol. 56, No. 7, 1470-1472, 1985.
doi:10.1063/1.1138136 Google Scholar
25. Lobaev, M. A., et al. "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Tech. Phys. Lett., Vol. 35, No. 12, 1074-1077, 2009.
doi:10.1134/S1063785009120025 Google Scholar
26. Chang, C., et al. "The effect of grooved surface on dielectric multipactor," J. Appl. Phys., Vol. 105, No. 12, 123305, 2009.
doi:10.1063/1.3153947 Google Scholar
27. Klimov, A. I. and E. M. Totmeninov, "Diffraction effects in measurements of characteristics of high-power microwave pulses with wide aperture liquid calorimeters," Rus. Phys. Journ., Vol. 60, No. 6, 964-971, 2017.
doi:10.1007/s11182-017-1165-9 Google Scholar
28. Tarakanov, V. P., et al. "Time-dependent numerical simulation of diffraction and absorption effects in diagnostics of short high-power microwave pulses using wide-aperture liquid calorimeters," EPJ Web Conf., Vol. 149, 04046, 2017.
doi:10.1051/epjconf/201714904046 Google Scholar
29. ANSYS HFSS 3D Electromagnetic Field Simulator for RF and Wireless Design [online] available at https://www.ansys.com/products/electronics/ansys-hfss.
30. Schamiloglu, E., et al. "High-power microwave-induced TM/sub01/plasma ring," IEEE Transactions on Plasma Science, Vol. 24, No. 1, 6-7, 1996.
doi:10.1109/27.491664 Google Scholar
31. Ivanov, O. A., M. A. Lobaev, V. A. Isaev, and A. L. Vikharev, "Experimental study of a multipactor discharge on a dielectrics surface in a high-Q microwave cavity," Plasma Phys. Reports, Vol. 36, No. 4, 336-344, 2010.
doi:10.1134/S1063780X10040033 Google Scholar
32. Lobaev, M. A., et al. "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Tech. Phys. Lett., Vol. 35, No. 12, 1074-1077, 2009.
doi:10.1134/S1063785009120025 Google Scholar
33. Krupka, J., "Measurements of the complex permittivity of low loss polymers at frequency range from 5 GHz to 50 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 464-466, 2016.
doi:10.1109/LMWC.2016.2562640 Google Scholar
34. Bao, J., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, No. 12, 4441-4450, 1996.
doi:10.1063/1.471197 Google Scholar
35. Barthel, J. K. Bachhuber, R. Buchner, and H. Hetzenauer, "Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols," Chem. Phys. Lett., Vol. 165, No. 4, 369-373, 1990.
doi:10.1016/0009-2614(90)87204-5 Google Scholar
36. Sato, T. and R. Buchner, "Dielectric relaxation processes in ethanol/water mixtures," J. Phys. Chem. A, Vol. 108, No. 23, 5007-5015, 2004.
doi:10.1021/jp035255o Google Scholar
37. "Agilent basics of measuring the dielectric properties of materials. Application note," Agilent Technologies, 2013. Google Scholar
38. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," J. Chem. Phys., Vol. 9, 341-352, 1941.
doi:10.1063/1.1750906 Google Scholar