1. Harris, S. E., "Electromagnetically induced transparency," Physics Today, Vol. 50, 36-42, 1997.
doi:10.1063/1.881806 Google Scholar
2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Review of Modern Physics, Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633 Google Scholar
3. You, J. Q. and F. Nori, "Atomic physics and quantum optics using superconducting circuits," Nature, Vol. 474, 589-597, 2011.
doi:10.1038/nature10122 Google Scholar
4. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Vol. 397, 594-598, 1999.
doi:10.1038/17561 Google Scholar
5. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Physical Review Letters, Vol. 86, 783-786, 2001.
doi:10.1103/PhysRevLett.86.783 Google Scholar
6. Boyd, R. W. and D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature, Vol. 441, No. 7094, 701-702, 2006.
doi:10.1038/441701a Google Scholar
7. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Physical Review Letters, Vol. 99, 147401, 2007.
doi:10.1103/PhysRevLett.99.147401 Google Scholar
8. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Physical Review Letters, Vol. 101, No. 4, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903 Google Scholar
9. Shao, J., P. Chen, R. X. Wu, et al. "Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial," Appl. Phys. Lett., Vol. 102, 034106, 2013.
doi:10.1063/1.4789432 Google Scholar
10. Zhang, S., Dentcho A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Physical Review Letters, Vol. 101, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401 Google Scholar
11. Yanchuk, B. L., N. I. Zheludev, N. J. Halas, et al. "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810 Google Scholar
12. Cao, W., R. Singh, I. A. Naib, et al. "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett., Vol. 37, 3366-3368, 2012.
doi:10.1364/OL.37.003366 Google Scholar
13. Zhu, L., L. Dong, J. Guo, et al. "Polarization-independent transparent effect in windmill-like metasurface," Journal of Physics D: Applied Physics, Vol. 51, No. 26, 2018.
doi:10.1088/1361-6463/aac560 Google Scholar
14. Zhu, L., X. Zhao, et al. "Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial," Optics Express, Vol. 27, 12163, 2019.
doi:10.1364/OE.27.012163 Google Scholar
15. Liu, N., H. Liu, S. N. Zhu, et al. "Stereometamaterials," Nat. Photon, Vol. 3, 157-162, 2009.
doi:10.1038/nphoton.2009.4 Google Scholar
16. Anlage, S. M., "The physics and applications of superconducting metamaterials," Journal of Optics, Vol. 13, 024001, 2011.
doi:10.1088/2040-8978/13/2/024001 Google Scholar
17. Ricci, M., N. Orloff, and S. M. Anlage, "Superconducting metamaterials," Applied Physics Letters, Vol. 87, 034102, 2005.
doi:10.1063/1.1996844 Google Scholar
18. Ricci, M. C., H. Xu, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, "Tunability of superconducting metamaterials," IEEE Transactions on Applied Superconductivity, Vol. 17, 918-921, 2007.
doi:10.1109/TASC.2007.898535 Google Scholar
19. Gu, J., R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H. T. Chen, and W. Zhang, "Terahertz superconductor metamaterial," Applied Physics Letters, Vol. 97, 071102, 2010.
doi:10.1063/1.3479909 Google Scholar
20. Jin, B. B., J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, "Enhanced slow light in superconducting electromagnetically induced transparency metamaterials," Supercond. Sci. Technol., Vol. 26, 074004, 2013.
doi:10.1088/0953-2048/26/7/074004 Google Scholar
21. Jin, B. B., C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, "Low loss and magnetic field-tunable superconducting terahertz metamaterial," Optics Express, Vol. 18, 17504-17509, 2010.
doi:10.1364/OE.18.017504 Google Scholar
22. Wu, J. B., B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Tuning of superconducting niobium nitride terahertz metamaterials," Optics Express, Vol. 19, 12021-12026, 2011.
doi:10.1364/OE.19.012021 Google Scholar
23. Zhang, C. H., J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, and P. H. Wu, "Low-loss terahertz metamaterial from superconducting niobium nitride films," Optics Express, Vol. 20, 42-47, 2012.
doi:10.1364/OE.20.000042 Google Scholar
24. Zhang, Y. G., J. B. Wu, et al. "Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach," Science China (Information Sciences), Vol. 57, 122401, 2014. Google Scholar
25. Prosvirnin, S., S. Zouhdi, et al. "Resonances of closed modes in thin arrays of complex particles," Advances in Electromagnetics of Complex Media and Metamaterials, 281-290, Kluwer Academic Publishers, Netherlands, 2003. Google Scholar
26. Tassin, P., L. Zhang, R. Zhao, et al. "Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation," Physical Review Letters, Vol. 109, No. 18, 187401, 2012.
doi:10.1103/PhysRevLett.109.187401 Google Scholar
27. Alzar, C. L. G., M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," American Journal of Physics, Vol. 70, 37, 2002.
doi:10.1119/1.1412644 Google Scholar
28. Zhang, Y. G., J. B. Wu, et al. "Tailoring electromagnetically induced transparency effect of terahertz metamaterials on ultrathin substrate," Science China (Information Sciences), Vol. 59, 042414, 2016.
doi:10.1007/s11432-016-5537-5 Google Scholar