Vol. 94
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-02
Dielectric-Insensitive Phased Array with Improved Characteristics for 5G Mobile Handsets
By
Progress In Electromagnetics Research M, Vol. 94, 209-219, 2020
Abstract
In this manuscript, a high-performance beam-steerable phased array antenna is introduced for fifth-generation (5G) mobile handsets. The configuration of the design is arranged by employing eight dielectric-insensitive L-ring/slot-loop radiators in a linear form on the top edge of the handset mainboard. The beam-steerable array design exhibits high radiation performances even though it is implemented on a lossy FR-4 material. The proposed design exhibits an impedance bandwidth of 18-20 GHz with the center frequency of 19 GHz. It provides satisfactory characteristics such as wide beam-steering, high gain and efficiency characteristics indicating its promising potential for beam-steerable 5G smartphones. The characteristics of the antenna array are insensitive for different types of dielectrics. Furthermore, the designed antenna array offers quite good radiation behavior in the presence of hand phantom.
Citation
Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, and Raed A. Abd-Alhameed, "Dielectric-Insensitive Phased Array with Improved Characteristics for 5G Mobile Handsets," Progress In Electromagnetics Research M, Vol. 94, 209-219, 2020.
doi:10.2528/PIERM20042108
References

1. Osseiran, et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Commun. Mag., Vol. 52, 26-35, 2014.
doi:10.1109/MCOM.2014.6815890        Google Scholar

2. Parchin, N. O., et al., Microwave/RF Components for 5G Front-End Systems, Avid Science, 2019.

3. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750        Google Scholar

4. Al-Yasir, Y. I. A., et al., "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, 1-9, 2018.
doi:10.3390/electronics7110293        Google Scholar

5. Parchin, N. O., et al., "UWB MM-wave antenna array with quasi omnidirectional beams for 5G handheld devices," International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 2016.        Google Scholar

6. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "A design of crossed exponentially tapered slot antenna with multi-resonance function for 3G/4G/5G applications," Progress In Electromagnetics Research Letters, Vol. 92, 1-8, 2020.
doi:10.2528/PIERL20042306        Google Scholar

7. Gupta, P., "Evolvement of mobile generations: 1G to 5G," International Journal for Technological Research in Engineering, Vol. 1, 152-157, 2013.        Google Scholar

8. Ojaroudi Parchin, N., Y. I. A. Al-Yasir, H. J. Basherlou, and R. A. Abd-Alhameed, "A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications," Progress In Electromagnetics Research C, Vol. 101, 71-80, 2020.
doi:10.2528/PIERC20013001        Google Scholar

9. Parchin, N. O., et al., "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," Telecommunications Forum (TELFOR), 587-590, Belgrade, Serbia, Nov. 24–26, 2015.        Google Scholar

10. Ojaroudiparchin, N., et al., "Low-cost planar mmWave phased array antenna for use in mobile satellite (MSAT) platforms," Telecommunications Forum (TELFOR), 528-531, Serbia, 2015.        Google Scholar

11. Chen, Q., Z. Gong, X. Yang, Z. Wang, and L. Zhang, "Design considerations for millimeter wave antennas within a chip package," IEEE International Workshop on Anti-counterfeiting, Security, Identification, 13-17, Xiamen, Fujian, Apr. 16–18, 2007.        Google Scholar

12. Parchin, N. O., et al., "Frequency-switchable patch antenna with parasitic ring load for 5G mobile terminals," IEEE International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 2019.        Google Scholar

13. Parchin, N. O., et al., "Frequency reconfigurable antenna array for MM wave 5G mobile handsets," Broadband Communications, Networks, and Systems, BROADNETS, Faro, Portugal, 2019.        Google Scholar

14. NTT Docomo, , Docomo 5G White Paper, Jul. 2014 [Online], available: https://www.nttdocomo.co.jp/english/corporate/technology/whitepaper 5g/.

15. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, London, UK, 2018.        Google Scholar

16. Parchin, N. O., et al., "MM-wave phased array quasi-yagi antenna for the upcoming 5G cellular communications," Applied Sciences, Vol. 9, 1-14, 2019.        Google Scholar

17. Hong, W., K. Baek, Y. Lee, and Y. G. Kim, "Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications," IEEE International Microwave Symposium, Tampa Bay, Florida, Jun. 1–6, 2014.        Google Scholar

18. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Multi-layer 5G mobile phone antenna for multi-user MIMO communications," Telecommunications Forum (TELFOR 2015), Serbia, Nov. 2015.        Google Scholar

19. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley-Interscience, 1972.

20. Rajagopal, S., S. Abu-Surra, Z. Pi, and F. Khan, "Antenna array design for multi-gbps mmwave mobile broadband communication," Proc. IEEE GLOBECOM’2011, 1-6, Houston, Texas, USA, 2011.        Google Scholar

21. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Beam-steerable microstrip-fed bow-tie antenna array for fifth generation cellular communications," EuCAP 2016, Switzerland, 2016.        Google Scholar

22. Parchin, N. O., et al., "High-performance Yagi-Uda antenna array for 28 GHz mobile communications," TELFOR 2019, Belgrade, Serbia, Nov. 25–27, 2019.        Google Scholar

23. Ullah, A., et al., "Coplanar waveguide antenna with defected ground structure for 5G millimeter wave communications," IEEE MENACOMM’19, Bahrain, 2019.        Google Scholar

24. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "Dual circularly polarized crescent-shaped slot antenna for 5G front-end applications," Progress In Electromagnetic Research Letters, Vol. 91, 41-48, 2020.
doi:10.2528/PIERL20040107        Google Scholar

25. Parchin, N. O., et al., "Reconfigurable phased array 5G smartphone antenna for cognitive cellular networks," 23th Telecommunications Forum, TELFOR 2019, Belgrade, Serbia, Nov. 25–27, 2019.        Google Scholar

26. Ojaroudiparchin, N., et al., "Wide-scan phased array antenna fed by coax-to-microstriplines for 5G cell phones," MIKON Conference, Rakow, Poland, May 2016.        Google Scholar

27. Hong, W., et al., "mmWave phased-array with hemispheric coverage for 5th generation cellular handsets," EuCAP, 714-716, 2014.        Google Scholar

28. Parchin, N. O., et al., "A beam-steerable antenna array with radiation beam reconfigurability for 5G smartphones," EuCAP 2020, Copenhagen, Denmark, 2020.        Google Scholar

29. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "A compact design of planar array antenna with fractal elements for future generation applications," Applied Computational Electromagnetics Society (ACES) Journal, 789-796, 2016.        Google Scholar

30. CST Microwave Studio, ver. 2014, CST, Framingham, MA, USA, , 2014.

31. Ojaroudi Parchin, N., R. A. Abd-Alhameed, and M. Shen, "Gain improvement of a UWB antenna using a single-layer FSS," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), Xiamen, China, Dec. 17–20, 2019.        Google Scholar

32. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, No. 10, 816-822, 2012.        Google Scholar

33. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.        Google Scholar

35. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "UWB microstrip-fed slot antenna with improved bandwidth and dual notched bands using protruded parasitic strips," Progress In Electromagnetic Research C, Vol. 101, 261-273, 2020.        Google Scholar

36. Yngvesson, K. S., et al., "The tapered slot antenna-a new integrated element for millimeter-wave applications," IEEE Trans. Microw. Theory Techn., Vol. 37, 365-374, 1989.        Google Scholar

37. Parchin, N. O., et al., "Low-profile air-filled antenna for next generation wireless systems," Wirel. Pers. Commun., Vol. 97, 3293-3300, 2017.        Google Scholar

38. Salman, J. W., M. M. Ameen, and S. O. Hassan, "Effects of the loss tangent, dielectric substrate permittivity and thickness on the performance of circular microstrip antennas," Journal of Engineering and Development, Vol. 10, No. 1, 1-13, 2006.        Google Scholar

39. Ojaroudi, N. and M. Ojaroudi, "Bandwidth enhancement of an ultra-wideband printed slot antenna with WLAN band-notched function," Microw. Opt. Technol. Lett., Vol. 55, 1448-1451, 2013.        Google Scholar

40. Ojaroudi, M. and N. Ojaroudi, "Ultra-wideband slot antenna with frequency band-stop operation," Microw. Opt. Technol. Lett., Vol. 55, 2020-2023, 2013.        Google Scholar

41. Ojaroudi, N., "Small microstrip-fed slot antenna with frequency band-stop function," 21st Telecommunications Forum, TELFOR 2013, Belgrade, Serbia, Nov. 27–28, 2013.        Google Scholar

42. Ojaroudi, N., "Design of ultra-wideband monopole antenna with enhanced bandwidth," 21st Telecommunications Forum, TELFOR 2013, Belgrade, Serbia, Nov. 27–28, 2013.        Google Scholar

43. Ojaroudi, Y., et al., "Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications," Microw. Opt. Technol. Lett., Vol. 57, 756-759, 2015.        Google Scholar

44. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quadband Planar Inverted-F Antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.        Google Scholar

45. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "8 × 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations," Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), 1-5, Davos, Switzerland, Apr. 2016.        Google Scholar

46. Parchin, N. O., et al., "8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets," IET Conference on Antennas and Propagation, Birmingham, UK, Nov. 2019.        Google Scholar

47. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A radiation-beam switchable antenna array for 5G smartphones," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1769-1774, Xiamen, China, Dec. 17–20, 2019.        Google Scholar

48. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications," Microw. Opt. Technol. Lett., Vol. 58, 2148-2158, 2016.        Google Scholar

49. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, Inc., 2009.

50. Parchin, N. O., et al., "Smartphone antenna design covering 2G∼5G mobile terminals," International Journal of Electrical and Electronic Science, Vol. 7, 1-6, 2020.        Google Scholar

51. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "Design of low cost FR4 wide-band antenna arrays for future 5G mobile communications," International Symposium on Antennas and Propagation (ISAP), Xi'an, China, 2019.        Google Scholar

52. Ilvonen, J., et al., "Mobile terminal antenna performance with the user's hand," IEEE Antenna and Wireless Propagation Letters, Vol. 10, 772-775, 2000.        Google Scholar

53. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 456, 2019.        Google Scholar

54. Ojaroudi, N., "Circular microstrip antenna with dual band-stop performance for ultra-wideband systems," Microw. Opt. Technol. Lett., Vol. 56, 2095-2098, 2014.        Google Scholar

55. Ojaroudi, M., et al., "Dual band-notch small square monopole antennawith enhanced bandwidth characteristics for UWB applications," ACES J., Vol. 25, 420-426, 2012.        Google Scholar

56. Siahkal-Mahalle, B. H., et al., "A new design of small square monopole antenna with enhanced bandwidth by using cross-shaped slot and conductor-backed plane," Microw. Opt. Technol. Lett., Vol. 54, 2656-2659, 2012.        Google Scholar

57. Ojaroudi, M., et al., "Ultra-wideband small square monopole antenna with dual band-notched function," Microw. Opt. Technol. Lett., Vol. 54, 372-374, 2012.        Google Scholar

58. Ojaroudi, N., et al., "Compact ultra-wideband monopole antenna with enhanced bandwidth and dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, 346-357, 2015.        Google Scholar

59. Parchin, N. O., et al., "Recent developments of reconfigurable antennas for current and future wireless communication systems," Electronics, Vol. 8, 128, 2019.        Google Scholar

60. Ojaroudiparchin, N., et al., "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, 2016.        Google Scholar