1. Osseiran, et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Commun. Mag., Vol. 52, 26-35, 2014.
doi:10.1109/MCOM.2014.6815890 Google Scholar
2. Parchin, N. O., et al., Microwave/RF Components for 5G Front-End Systems, Avid Science, 2019.
3. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750 Google Scholar
4. Al-Yasir, Y. I. A., et al., "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, 1-9, 2018.
doi:10.3390/electronics7110293 Google Scholar
5. Parchin, N. O., et al., "UWB MM-wave antenna array with quasi omnidirectional beams for 5G handheld devices," International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 2016. Google Scholar
6. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "A design of crossed exponentially tapered slot antenna with multi-resonance function for 3G/4G/5G applications," Progress In Electromagnetics Research Letters, Vol. 92, 1-8, 2020.
doi:10.2528/PIERL20042306 Google Scholar
7. Gupta, P., "Evolvement of mobile generations: 1G to 5G," International Journal for Technological Research in Engineering, Vol. 1, 152-157, 2013. Google Scholar
8. Ojaroudi Parchin, N., Y. I. A. Al-Yasir, H. J. Basherlou, and R. A. Abd-Alhameed, "A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications," Progress In Electromagnetics Research C, Vol. 101, 71-80, 2020.
doi:10.2528/PIERC20013001 Google Scholar
9. Parchin, N. O., et al., "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," Telecommunications Forum (TELFOR), 587-590, Belgrade, Serbia, Nov. 24–26, 2015. Google Scholar
10. Ojaroudiparchin, N., et al., "Low-cost planar mmWave phased array antenna for use in mobile satellite (MSAT) platforms," Telecommunications Forum (TELFOR), 528-531, Serbia, 2015. Google Scholar
11. Chen, Q., Z. Gong, X. Yang, Z. Wang, and L. Zhang, "Design considerations for millimeter wave antennas within a chip package," IEEE International Workshop on Anti-counterfeiting, Security, Identification, 13-17, Xiamen, Fujian, Apr. 16–18, 2007. Google Scholar
12. Parchin, N. O., et al., "Frequency-switchable patch antenna with parasitic ring load for 5G mobile terminals," IEEE International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 2019. Google Scholar
13. Parchin, N. O., et al., "Frequency reconfigurable antenna array for MM wave 5G mobile handsets," Broadband Communications, Networks, and Systems, BROADNETS, Faro, Portugal, 2019. Google Scholar
14. NTT Docomo, , Docomo 5G White Paper, Jul. 2014 [Online], available: https://www.nttdocomo.co.jp/english/corporate/technology/whitepaper 5g/.
15. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, London, UK, 2018. Google Scholar
16. Parchin, N. O., et al., "MM-wave phased array quasi-yagi antenna for the upcoming 5G cellular communications," Applied Sciences, Vol. 9, 1-14, 2019. Google Scholar
17. Hong, W., K. Baek, Y. Lee, and Y. G. Kim, "Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications," IEEE International Microwave Symposium, Tampa Bay, Florida, Jun. 1–6, 2014. Google Scholar
18. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Multi-layer 5G mobile phone antenna for multi-user MIMO communications," Telecommunications Forum (TELFOR 2015), Serbia, Nov. 2015. Google Scholar
19. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley-Interscience, 1972.
20. Rajagopal, S., S. Abu-Surra, Z. Pi, and F. Khan, "Antenna array design for multi-gbps mmwave mobile broadband communication," Proc. IEEE GLOBECOM’2011, 1-6, Houston, Texas, USA, 2011. Google Scholar
21. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Beam-steerable microstrip-fed bow-tie antenna array for fifth generation cellular communications," EuCAP 2016, Switzerland, 2016. Google Scholar
22. Parchin, N. O., et al., "High-performance Yagi-Uda antenna array for 28 GHz mobile communications," TELFOR 2019, Belgrade, Serbia, Nov. 25–27, 2019. Google Scholar
23. Ullah, A., et al., "Coplanar waveguide antenna with defected ground structure for 5G millimeter wave communications," IEEE MENACOMM’19, Bahrain, 2019. Google Scholar
24. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "Dual circularly polarized crescent-shaped slot antenna for 5G front-end applications," Progress In Electromagnetic Research Letters, Vol. 91, 41-48, 2020.
doi:10.2528/PIERL20040107 Google Scholar
25. Parchin, N. O., et al., "Reconfigurable phased array 5G smartphone antenna for cognitive cellular networks," 23th Telecommunications Forum, TELFOR 2019, Belgrade, Serbia, Nov. 25–27, 2019. Google Scholar
26. Ojaroudiparchin, N., et al., "Wide-scan phased array antenna fed by coax-to-microstriplines for 5G cell phones," MIKON Conference, Rakow, Poland, May 2016. Google Scholar
27. Hong, W., et al., "mmWave phased-array with hemispheric coverage for 5th generation cellular handsets," EuCAP, 714-716, 2014. Google Scholar
28. Parchin, N. O., et al., "A beam-steerable antenna array with radiation beam reconfigurability for 5G smartphones," EuCAP 2020, Copenhagen, Denmark, 2020. Google Scholar
29. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "A compact design of planar array antenna with fractal elements for future generation applications," Applied Computational Electromagnetics Society (ACES) Journal, 789-796, 2016. Google Scholar
30. CST Microwave Studio, ver. 2014, CST, Framingham, MA, USA, , 2014.
31. Ojaroudi Parchin, N., R. A. Abd-Alhameed, and M. Shen, "Gain improvement of a UWB antenna using a single-layer FSS," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), Xiamen, China, Dec. 17–20, 2019. Google Scholar
32. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, No. 10, 816-822, 2012. Google Scholar
33. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014. Google Scholar
35. Ojaroudi Parchin, N., H. J. Basherlou, and R. A. Abd-Alhameed, "UWB microstrip-fed slot antenna with improved bandwidth and dual notched bands using protruded parasitic strips," Progress In Electromagnetic Research C, Vol. 101, 261-273, 2020. Google Scholar
36. Yngvesson, K. S., et al., "The tapered slot antenna-a new integrated element for millimeter-wave applications," IEEE Trans. Microw. Theory Techn., Vol. 37, 365-374, 1989. Google Scholar
37. Parchin, N. O., et al., "Low-profile air-filled antenna for next generation wireless systems," Wirel. Pers. Commun., Vol. 97, 3293-3300, 2017. Google Scholar
38. Salman, J. W., M. M. Ameen, and S. O. Hassan, "Effects of the loss tangent, dielectric substrate permittivity and thickness on the performance of circular microstrip antennas," Journal of Engineering and Development, Vol. 10, No. 1, 1-13, 2006. Google Scholar
39. Ojaroudi, N. and M. Ojaroudi, "Bandwidth enhancement of an ultra-wideband printed slot antenna with WLAN band-notched function," Microw. Opt. Technol. Lett., Vol. 55, 1448-1451, 2013. Google Scholar
40. Ojaroudi, M. and N. Ojaroudi, "Ultra-wideband slot antenna with frequency band-stop operation," Microw. Opt. Technol. Lett., Vol. 55, 2020-2023, 2013. Google Scholar
41. Ojaroudi, N., "Small microstrip-fed slot antenna with frequency band-stop function," 21st Telecommunications Forum, TELFOR 2013, Belgrade, Serbia, Nov. 27–28, 2013. Google Scholar
42. Ojaroudi, N., "Design of ultra-wideband monopole antenna with enhanced bandwidth," 21st Telecommunications Forum, TELFOR 2013, Belgrade, Serbia, Nov. 27–28, 2013. Google Scholar
43. Ojaroudi, Y., et al., "Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications," Microw. Opt. Technol. Lett., Vol. 57, 756-759, 2015. Google Scholar
44. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quadband Planar Inverted-F Antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014. Google Scholar
45. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "8 × 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations," Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), 1-5, Davos, Switzerland, Apr. 2016. Google Scholar
46. Parchin, N. O., et al., "8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets," IET Conference on Antennas and Propagation, Birmingham, UK, Nov. 2019. Google Scholar
47. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A radiation-beam switchable antenna array for 5G smartphones," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1769-1774, Xiamen, China, Dec. 17–20, 2019. Google Scholar
48. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications," Microw. Opt. Technol. Lett., Vol. 58, 2148-2158, 2016. Google Scholar
49. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, Inc., 2009.
50. Parchin, N. O., et al., "Smartphone antenna design covering 2G∼5G mobile terminals," International Journal of Electrical and Electronic Science, Vol. 7, 1-6, 2020. Google Scholar
51. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "Design of low cost FR4 wide-band antenna arrays for future 5G mobile communications," International Symposium on Antennas and Propagation (ISAP), Xi'an, China, 2019. Google Scholar
52. Ilvonen, J., et al., "Mobile terminal antenna performance with the user's hand," IEEE Antenna and Wireless Propagation Letters, Vol. 10, 772-775, 2000. Google Scholar
53. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 456, 2019. Google Scholar
54. Ojaroudi, N., "Circular microstrip antenna with dual band-stop performance for ultra-wideband systems," Microw. Opt. Technol. Lett., Vol. 56, 2095-2098, 2014. Google Scholar
55. Ojaroudi, M., et al., "Dual band-notch small square monopole antennawith enhanced bandwidth characteristics for UWB applications," ACES J., Vol. 25, 420-426, 2012. Google Scholar
56. Siahkal-Mahalle, B. H., et al., "A new design of small square monopole antenna with enhanced bandwidth by using cross-shaped slot and conductor-backed plane," Microw. Opt. Technol. Lett., Vol. 54, 2656-2659, 2012. Google Scholar
57. Ojaroudi, M., et al., "Ultra-wideband small square monopole antenna with dual band-notched function," Microw. Opt. Technol. Lett., Vol. 54, 372-374, 2012. Google Scholar
58. Ojaroudi, N., et al., "Compact ultra-wideband monopole antenna with enhanced bandwidth and dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, 346-357, 2015. Google Scholar
59. Parchin, N. O., et al., "Recent developments of reconfigurable antennas for current and future wireless communication systems," Electronics, Vol. 8, 128, 2019. Google Scholar
60. Ojaroudiparchin, N., et al., "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, 2016. Google Scholar