1. Dehbashi, R. and M. Shahabadi, "External cylindrical invisibility cloaks with small material dynamic range," IEEE Trans. Antenn. Propag., Vol. 62, No. 4, 2187, 2014.
doi:10.1109/TAP.2014.2301991 Google Scholar
2. Dehbashi, R., K. S. Bialkowski, and A. M. Abbosh, "Uniqueness theorem and uniqueness of inverse problems for lossy anisotropic inhomogeneous structures with diagonal material tensors," J. Appl. Phys., Vol. 121, No. 20, 203103, 2017.
doi:10.1063/1.4983768 Google Scholar
3. Dehbashi, R. and M. Shahabadi, "Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks," J. Appl. Phys., Vol. 114, No. 24, 244501, 2013.
doi:10.1063/1.4850956 Google Scholar
4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 18, No. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
5. Smith, D. R., J. B. Pendry, and M. C. K. Wiltsgire, "Metamaterials and negative refractive index," Science, Vol. 305, 788, 2004.
doi:10.1126/science.1096796 Google Scholar
6. Dehbashi, R., D. Fathi, S. Mohajerzadeh, and B. Forouzandeh, "Equivalent left-handed/right-handed metamaterial’s circuit for the massless dirac fermions with negative refraction," IEEE J. Sel. Top. Quantum Electron., Vol. 16, No. 2, 394, 2010.
doi:10.1109/JSTQE.2009.2033818 Google Scholar
7. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410, 2007.
doi:10.1103/PhysRevB.75.155410 Google Scholar
8. Alekseyev, L. V., E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, "Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control," Appl. Phys. Lett., Vol. 13, No. 97, 131107, 2010.
doi:10.1063/1.3469925 Google Scholar
9. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunnelling through an epsilon-near-aero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 2, No. 100, 023903, 2008.
doi:10.1103/PhysRevLett.100.023903 Google Scholar
10. Mass, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelength," Nat. Photonics, Vol. 7, 907, 2013.
doi:10.1038/nphoton.2013.256 Google Scholar
11. Ahmed, M. M. and N. Engheta, "Wave-matter interactions in epsilon-and-mu-near-zero structures," Nat. Commun., Vol. 5, 5638, 2014. Google Scholar
12. Dehbashi, R., K. S. Bialkowski, and A. M. Abbosh, "Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties," Opt. Express, Vol. 25, No. 20, 24486, 2017.
doi:10.1364/OE.25.024486 Google Scholar
13. Dehbashi, R., K. S. Bialkowski, and A. M. Abbosh, "Size reduction of electromagnetic devices using double near zero materials," IEEE Trans. Antenn. Propag., Vol. 65, No. 12, 7102, 2017.
doi:10.1109/TAP.2017.2758357 Google Scholar
14. Yuan, Y., K. Zhang, B. Ratni, et al. "Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces," Nat. Commun., Vol. 11, 4186, 2020.
doi:10.1038/s41467-020-17773-6 Google Scholar
15. Yuan, Y., S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. W. Shah, N. Burokur, and C.-W. Qiu, "A fully phase-modulated metasurface as an energy-controllable circular polarization router," Advanced Science, Vol. 7, 18, 2020. Google Scholar
16. Zhang, K., Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, ACS Applied Materials & Interfaces, Vol. 11, No. 31, 28423-28430, 2019.
17. Chang, K. Y. and G. Varani, "Nucleic acids structure and recognitions," Nat. Struct. Biol., Vol. 4 (suppl.), 854, 1997. Google Scholar
18. Friedberg, E. C., G. C. Walker, and W. Siede, DNA Repair and Mutagenesis, W. H. Freeman and Company, 1995.
19. Nelson, D. L. and M. M. Cox, Lehninger Principles of Biochemistry, W. H. Freeman and Company, 2005.
20. Scopes, R. K., Protein Purification: Principles and Practice, 3rd Ed., Spring-Verlag, 1994.
doi:10.1007/978-1-4757-2333-5
21. Crofts, A. R. and E. A. Berry, "Structure and function of the cytochrome bc1 complex of mitochondria and photosynthetic bacteria," Curr. Opin. Struct. Biol., Vol. 8, 501, 1998.
doi:10.1016/S0959-440X(98)80129-2 Google Scholar
22. Michel, H., J. Behr, A. Harrenga, and A. Kannt, "Cytochrome c oxidase: Structure and spectroscopy," Annu. Rev. Biophys. Biomol. Struct., Vol. 27, 329, 1998.
doi:10.1146/annurev.biophys.27.1.329 Google Scholar
23. Tsukihara, T., et al., "The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8A◦," Science, Vol. 272, 113, 1996. Google Scholar
24. Butt, W. D. and D. Keilin, "Absorption spectra and some other properties of cytochrome c and of its compounds with ligands," Proc. R. Soc. Lond. B Biol. Sci., Vol. 156, 429-458, 1962. Google Scholar
25. Mansfield, S. M. and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett., Vol. 57, No. 24, 2615, 1990.
doi:10.1063/1.103828 Google Scholar
26. Wu, Q., G. D. Feke, R. D. Grober, and L. P. Ghislain, "Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens," Appl. Phys. Lett., Vol. 75, No. 26, 4062, 1999.
doi:10.1063/1.125537 Google Scholar
27. Zhang, Y. and W.-H. Zhu, "Electrically tunable optical devices basedon graphene-split-ringresonator periodic multilayers at mid-infrared frequencies," J. Appl. Phys., Vol. 128, 133106, 2020.
doi:10.1063/5.0019943 Google Scholar
28. Palik, E. D., Handbook of Optical Constants of Solids, Academic, 1998.
29. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.
30. La Spada, L. and L. Vegni, "Near-zero-index wires," Opt. Express, Vol. 25, No. 20, 23699, 2017.
doi:10.1364/OE.25.023699 Google Scholar
31. Balanis, C. A., Advanced Electromagnetic Engineering, 2nd Ed., John Wiley & Sons, 2012.
32. Isakov, D. V., et al., "3D printed anisotropic dielectric composite with meta-material features," Mater. Des., Vol. 93, 423, 2016.
doi:10.1016/j.matdes.2015.12.176 Google Scholar