1. Grover, F. W., Inductance Calculations, Chs. 2 and 13, Dover, New York, 1964.
2. Dwight, H. B., "Electrical Coils and Conductors," McGraw-Hill Book Company, New York, 1945. Google Scholar
3. Snow, C., "Formulas for computing capacitance and inductance," 544, National Bureau of Standards Circular Washington DC, December 1954. Google Scholar
4. Kalantarov, P. L., Inductance Calculations, National Power Press, Moscow, USSR/Russia, 1955.
5. Conway, J. T., "Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions," IEEE Trans. Magn., Vol. 37, No. 4, 2977-2988, 2001.
doi:10.1109/20.947050 Google Scholar
6. Conway, J. T., "Trigonometric integrals for the magnetic field of the coil of rectangular cross section," IEEE Trans. Magn., Vol. 42, No. 5, 1538-1548, 2006.
doi:10.1109/TMAG.2006.871084 Google Scholar
7. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (Pancake)," IEEE Trans. Magn., Vol. 49, No. 2, 860-868, 2013.
doi:10.1109/TMAG.2012.2212909 Google Scholar
8. Ravaud, R., G. Lemarquand, S. Babic, V. Lemarquand, and C. Akyel, "Cylindrical magnets and coils: Fields, forces and inductances," IEEE Trans. Magn., Vol. 46, No. 9, 3585-3590, Sept. 2010.
doi:10.1109/TMAG.2010.2049026 Google Scholar
9. Conway, J. T., "Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions," IEEE Trans. Magn., Vol. 46, No. 1, 75-81, 2010.
doi:10.1109/TMAG.2009.2026574 Google Scholar
10. Yu, D. and K. S. Han, "Self-inductance of air-core circular coils with rectangular cross section," IEEE Trans. Magn., Vol. 23, No. 6, 3916-3921, Nov. 1987. Google Scholar
11. Kajikawa, K. and K. Kaiho, "Usable ranges of some expressions for calculation of the self-inductance of a circular coil of rectangular cross section," Journal of Cryogenics and Superconductivity Society of Japan, Vol. 30, No. 7, 324-332, 1995 (in Japanese).
doi:10.2221/jcsj.30.324 Google Scholar
12. Luo, J. and B. Chan, "Improvement of self-inductance calculations for circular coils of rectangular cross section," IEEE Trans. Magn., Vol. 49, No. 3, 1249-1255, Mar. 2013.
doi:10.1109/TMAG.2012.2228499 Google Scholar
13. Luo, Y., X. Wang, and X. Zhou, "Inductance calculations for circular coils with rectangular cross section and parallel axes using inverse mellin transform and generalized hypergeometric functions," IEEE Trans. on Power Electronics, Vol. 32, No. 2, 1367-1374, Feb. 2017.
doi:10.1109/TPEL.2016.2541180 Google Scholar
14. Pankrac, V., "Generalization of relations for calculating the mutual inductance of coaxial coils in terms of their applicability to non-coaxial coils," IEEE Trans. Magn., Vol. 47, No. 11, 4552-4563, Nov. 2011.
doi:10.1109/TMAG.2011.2148175 Google Scholar
15. Liang, S. and Y. Fang, "Analysis of inductance calculation of coaxial circular coils with rectangular cross section using inverse hyperbolic functions," IEEE Transactions on Applied Superconductivity, Vol. 25, No. 4, Aug. 2015. Google Scholar
16. Zupan, T., Z. Stih, and B. Trkulja, "Fast and precise method for inductance calculation of coaxial circular coils with rectangular cross section using the one-dimensional integration of elementary functions applicable to superconducting magnets," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 2, Apr. 2014.
doi:10.1109/TASC.2014.2301765 Google Scholar
17. Bitter, F., "The design of powerful electromagnets Part II. The magnetizing coil," Rev. Sci. Instrum., Vol. 7, No. 12, 482-489, 1936.
doi:10.1063/1.1752068 Google Scholar
18. Conway, J. T., "Non coaxial force and inductancecalculations for bitter coils and coils with uniform radialcurrent distributions," 2011 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 61-64, Sidney, Australia, Dec. 2011. Google Scholar
19. Ren, Y., F. Wang, G. Kuong, W. Chen, Y. Tan, J. Zhu, and P. He, "Mutual inductance and force calculations between coaxial bitter coils and superconducting coils with rectangular cross section," Journal of Superconductivity and Novel Magnetism, 2010. Google Scholar
20. Ren, Y., G. Kaung, and W. Chen, "Inductance of bitter coil with rectangular cross section," Journal of Superconductivity and Novel Magnetism, Vol. 26, 2159-2163, 2013.
doi:10.1007/s10948-012-1816-6 Google Scholar
21. Ren, Y., et al. "Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system," Nuclear Fusion, Vol. 55, 093002, 2015.
doi:10.1088/0029-5515/55/9/093002 Google Scholar
22. Babic, S. and C. Akyel, "Mutual inductance and magnetic force calculations for bitter disk coils (pancakes)," IET Science, Measurement & Technology, Vol. 10, No. 8, 972-976, 2016.
doi:10.1049/iet-smt.2016.0221 Google Scholar
23. Babic, S. and C. Akyel, "Mutual inductance and magnetic force calculations between two thick coaxial bitter coils of rectangular cross section," IET Electric Power Applications, Vol. 11, No. 3, 441-446, 2017.
doi:10.1049/iet-epa.2016.0628 Google Scholar
24. Babic, S. and C. Akyel, "Mutual inductance and magnetic force calculations between thick coaxial bitter coil of rectangular cross section with inverse radial current and filamentary circular coil with constant azimuthal current," IET Electric Power Applications, Vol. 11, No. 9, 1596-1600, 2017.
doi:10.1049/iet-epa.2017.0244 Google Scholar
25. Babic, S. and C. Akyel, "Calculation of some electromagnetic quantities for circular thick coil of rectangular cross section and pancake with inverse radial currents," IET Electric Power Applications, 2018.
doi:10.1049/iet-epa.2017.0244 Google Scholar
26. Babic, S. and C. Akyel, "Mutual inductance and magnetic force calculations for bitter disk coil (pancake) with nonlinear radial current and filamentary circular coil with azimuthal current," Journal Advances in Electrical Engineering, Hindawi, 2016. Google Scholar
27. Filanovsky, I. M., "On design of 60 GHz solid-state transformers modeled as coupled bitter coils," 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, Aug. 2019. Google Scholar
28. Babic, S. and C. Akyel, "Self-inductance of the circular coils of the rectangular cross-section with the radial and azimuthal current densities," Applied Physics, Open Access, Vol. 2, 352-367, 2020. Google Scholar
29. Yu, Y. and Y. Luo, "Inductance calculations for non-coaxial Bitter coils with rectangular cross-section using inverse Mellin transform," IET Electric Power Applications, Vol. 13, No. 1, 119-125, 2019.
doi:10.1049/iet-epa.2018.5386 Google Scholar
30. Chen, J. W., "Modeling and decoupling control of a linear permanent magnet actuator considering fringing effect for precision engineering," IEEE Trans. Magn., Vol. 57, No. 3, Mar. 2021.
doi:10.1109/TMAG.2021.3050835 Google Scholar
31. Gradshteyn, S. and I. M. Ryzhik, Table of Integrals, Seriesand Products, Academic Press Inc., New York and London, 1965.
32. Abramowitz, M. and I. S. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1972.
33. Brychkov, Y. A., Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas, CRC Press, Boca Raton, FL, USA, 2008.
doi:10.1201/9781584889571