Vol. 114
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-12-09
Hybrid Active Disturbance Rejection Decoupling Control for Six-Pole Active Magnetic Bearing Based on Improved Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 114, 205-217, 2022
Abstract
For the sake of decoupling the six-pole radial active magnetic bearing (AMB) with mutual coupling of two degrees of freedom, nonlinear and unstable disturbance, a hybrid active disturbance rejection control strategy based on improved genetic algorithm (HADRC-IGA) is proposed. Firstly, the configuration, magnetic circuit and suspension force model of the six-pole radial AMB are explained and established. Secondly, the HADRC-IGA is designed which is improved on the linear active disturbance rejection control (LADRC). Thirdly, the simulation is carried out, which shows that the capacity of resisting disturbance and the decoupling efficiency of two degrees of freedom of the HADRC-IGA are better than that of conventional LADRC. Finally, the experimental platform is constructed, and the experiments are conducted, which verify the performance of the proposed decoupled control system.
Citation
Yeming Li, and Huangqiu Zhu, "Hybrid Active Disturbance Rejection Decoupling Control for Six-Pole Active Magnetic Bearing Based on Improved Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 114, 205-217, 2022.
doi:10.2528/PIERM22091506
References

1. Liu, Y. F., M. Y. Huo, and N. M. Qi, "Modeling of disturbance torque in an aerostatic bearings-based nano-satellite simulator," Journal of Systems Engineering and Electronics, Vol. 29, No. 3, 618-624, June 2018.
doi:10.21629/JSEE.2018.03.19

2. Wang, Y., Q. Zhang, L. Zhao, and E. S. Kim, "Non-resonant, broad-band vibration-energy harvester based on self-assembled liquid bearing," 2015 Transducers --- 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 614-617, 2015.
doi:10.1109/TRANSDUCERS.2015.7180998

3. Le, Y., J. Sun, and B. Han, "Modeling and Design of 3-DOF magnetic bearing for high-speed motor including eddy-current effects and leakage effects," IEEE Trans. Ind. Electron, Vol. 63, No. 6, 3656-3665, June 2016.
doi:10.1109/TIE.2016.2530778

4. Gupta, S., J. Laldingliana, S. Debnath, and P. K. Biswas, "Closed loop control of active magnetic bearing using PID controller," 2018 International Conference on Computing, Power and Communication Technologies (GUCON), 686-690, 2018.
doi:10.1109/GUCON.2018.8675123

5. Chen, S.-L., S.-Y. Lin, and C.-S. Toh, "Adaptive unbalance compensation for a three-pole active magnetic bearing system," IEEE Trans. Ind. Electron, Vol. 67, No. 3, 2097-2106, March 2020.
doi:10.1109/TIE.2019.2903747

6. Chen, S.-L. and S.-Y. Lin, "Adaptive imbalance compensation for a three-pole AMB system," 2016 12th IEEE International Conference on Control and Automation (ICCA), 962-965, 2016.
doi:10.1109/ICCA.2016.7505404

7. Jin, Z., X. Sun, L. Chen, and Z. Yang, "Robust multi-objective optimization of a 3-pole active magnetic bearing based on combined curves with climbing algorithm," IEEE Trans. Ind. Electron, Vol. 69, No. 6, 5491-5501, June 2022.
doi:10.1109/TIE.2021.3088380

8. Jiang, K. J., C. S. Zhu, and L. L. Chen, "Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system," IEEE Trans. Ind. Electron, Vol. 62, No. 9, 5655-5664, September 2015.
doi:10.1109/TIE.2015.2405893

9. Wang, S. S., H. Q. Zhu, M. Y. Wu, and W. Y. Zhang, "Active disturbance rejection decoupling control for three-degree-of-freedom six-pole active magnetic bearing based on BP neural network," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-5, June 2020.

10. Tang, J. Q., K. Wang, and B. Xiang, "Stable control of high-speed rotor suspended by superconducting magnetic bearings and active magnetic bearings," IEEE Trans. Ind. Electron, Vol. 64, No. 4, 3319-3328, April 2017.
doi:10.1109/TIE.2016.2542786

11. Peng, C., J. Sun, C. X. Miao, and J. C. Fang, "A novel cross-feedback notch filter for synchronous vibration suppression of an MSFW with significant gyroscopic effects," IEEE Trans. Ind. Electron, Vol. 64, No. 9, 7181-7190, September 2017.
doi:10.1109/TIE.2017.2694402

12. Yu, Y. J., X. D. Sun, and W. Y. Zhang, "Modeling and decoupling control for rotor system in magnetic levitation wind turbine," IEEE Access, Vol. 5, 15516-15528, 2017.
doi:10.1109/ACCESS.2017.2732450

13. Wang, D. and H. Sun, "Design of repetitive controller based on linear auto disturbance rejection control for active magnetic bearing spindles," 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC), 106-110, 2017.
doi:10.1109/CRC.2017.37

14. Ren, G. P., Z. Yu, Y. Wu, S. Chen, X. Li, and H. T. Zhang, "The analysis of similarities and differences between ADRC and PID controller for AMB system," 2021 40th Chinese Control Conference (CCC), 274-279, 2021.
doi:10.23919/CCC52363.2021.9550344

15. Lu, Y. Y. and P. L. Wu, "Design of turret servo system based on optimized model-compensation active disturbance rejection controller," 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), 1-6, 2019.

16. Gao, Z. Q., "Scaling and bandwidth-parameterization based controller tuning," Proceedings of the 2003 American Control Conference, 4989-4996, 2003.

17. Li, X., et al., "A decoupling synchronous control method of two motors for large optical telescope," IEEE Trans. Ind. Electron, Vol. 69, No. 12, 13405-13416, December 2022.
doi:10.1109/TIE.2022.3142407