1. Frikha, A., M. Bensetti, L. Pichon, et al. "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Trans. Electromagn. Compat., Vol. 57, No. 6, 1481-1490, Dec. 2015.
doi:10.1109/TEMC.2015.2463677
2. Lee, S., D.-H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system," IEEE Trans. Ind. Electron., Vol. 66, No. 6, 4356-4367, Jun. 2019.
doi:10.1109/TIE.2018.2851988
3. Zhou, Y., L. Zhang, S. Xiu, and W. Hao, "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, Sep. 2019.
doi:10.1109/ACCESS.2019.2939197
4. Zhang, J., T. Lu, W. Zhang, X. Bian, and X. Cui, "Characteristics and in uence factors of radiated disturbance induced by IGBT switching," IEEE Trans. Power Electron., Vol. 34, No. 12, 11833-11842, Dec. 2019.
doi:10.1109/TPEL.2019.2913463
5. Ma, D., M. Ding, J. Lu, et al. "Study of shielding ratio of cylindrical ferrite enclosure withgaps and holes," IEEE Sens. J., Vol. 19, No. 15, 6085-6092, Aug. 2019.
doi:10.1109/JSEN.2019.2904719
6. Giaccone, L., V. Cirimele, and A. Canova, "Mitigation solutions for the magnetic field produced by MFDC spot welding guns," IEEE Trans. Electromagn. Compat., Vol. 62, No. 1, 83-92, Feb. 2020.
doi:10.1109/TEMC.2018.2877805
7. Kellogg, J., "Navigating the selection of magnetic resonance imaging shielding systems," IEEE Trans. Electromagn. Compat., Vol. 3, No. 1, 43-46, Mar. 2021.
8. Salvador, K., D. Harmel, L. Oliveira, S. Cabral, and H. Almaguer, "Study of the effectiveness of magnetic shielding for compact power transformers used on mobile applications," IEEE Latin Am. Trans., Vol. 18, No. 6, 1034-1040, Jun. 2020.
doi:10.1109/TLA.2020.9099680
9. Frikha, A., M. Bensetti, F. Duval, N. Benjelloun, F. Lafon, and L. Pichon, "A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field," IEEE Trans. Magn., Vol. 51, No. 3, 1-4, Mar. 2015.
doi:10.1109/TMAG.2014.2362953
10. Lovat, G., P. Burghignoli, R. Araneo, E. Stracqualursi, and S. Celozzi, "Closed-form LF magnetic shielding effectiveness of thin planar screens in coplanar loops configuration," IEEE Trans. Electromagn. Compat., Vol. 63, No. 2, 631-635, Apr. 2021.
doi:10.1109/TEMC.2020.3007864
11. Jiao, C., F. Ning, X. Yang, et al. "Low-frequency magnetic shielding of planar shields: A unified wave impedance formula for the transmission line analogy," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1046-1057, Feb. 17, 2021.
doi:10.1109/TEMC.2021.3052779
12. Zhang, Z., X. Yang, C. Jiao, Y. Yang, and J. Wang, "Analytical model for low-frequency magnetic field penetration through a circular aperture on a perfect electric conductor plate," IEEE Trans. Electromagn. Compat., Vol. 63, No. 5, 1599-1604, Apr. 6, 2021.
doi:10.1109/TEMC.2021.3065064
13. Qin, D. and C. Jiao, "Low-frequency magnetic shielding of planar screens: Effects of loop radius and loop-to-loop distance," IEEE Trans. Electromagn. Compat., Vol. 64, No. 2, 367-377, 2022.
doi:10.1109/TEMC.2021.3118543
14. Park, H. H., "Analytic magnetic shielding effectiveness of multiple long slots on a metal plate using rectangular loops," IEEE Trans. Electromagn. Compat., Vol. 62, No. 5, 1971-1979, Oct. 2020.
doi:10.1109/TEMC.2019.2954671
15. Bai, W., F. Ning, X. Yang, C. Jiao, and L. Chen, "Low frequency magnetic shielding effectiveness of a conducting plate with periodic apertures," IEEE Trans. Electromagn. Compat., Vol. 63, No. 1, 30-37, Feb. 2021.
doi:10.1109/TEMC.2020.2986249
16. Criel, S., L. Martens, and D. De Zutter, "Theoretical and experimental near-field characterization of perforated shields," IEEE Trans. Electromagn. Compat., Vol. 36, No. 3, 161-168, Aug. 1994.
doi:10.1109/15.305460
17. Araneo, R., G. Lovat, and S. Celozzi, "Shielding effectiveness of periodic screens against finite high-impedance near-field sources," IEEE Trans. Electromagn. Compat., Vol. 53, No. 3, 706-716, Aug. 2011.
doi:10.1109/TEMC.2010.2081367
18. Sarto, M. S., S. Greco, and A. Tamburrano, "Shielding effectiveness of protective metallic wire meshes: EM modeling and validation," IEEE Trans. Electromagn. Compat., Vol. 56, No. 3, 615-621, Jun. 2014.
doi:10.1109/TEMC.2013.2292715
19. Hyun, S., I. Jung, I. Hong, C. Jung, E. Kim, and J. Yook, "Modified sheet inductance of wire mesh using effective wire spacing," IEEE Trans. Electromagn. Compat., Vol. 58, No. 3, 911-914, Jun. 2016.
doi:10.1109/TEMC.2015.2502603
20. Naranjo-Villamil, S., C. Guiffaut, J. Gazave, and A. Reineix, "Lightning-induced magnetic fields inside grid-like shields: An improved formula complemented by a polynomial chaos expansion," IEEE Trans. Electromagn. Compat., Vol. 63, No. 2, 558-570, Apr. 2021.
doi:10.1109/TEMC.2021.3056320
21. Bai, W., A. Guo, T. Li, R. Cheng, and C. Jiao, "A multi-stage model for the electromagnetic shielding effectiveness prediction of an infinite conductor plane with periodic apertures," IEEE Access, Vol. 7, 61896-61903, 2019.
doi:10.1109/ACCESS.2019.2916145
22. Sun, X., B. Wei, Y. Li, and J. Yang, "A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 102-110, Sep. 1, 2021.
doi:10.1109/TEMC.2021.3104119
23. Andrieu, G., et al. "Homogenization of composite panels from a near-field magnetic shielding effectiveness measurement," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 700-703, Jun. 2012.
doi:10.1109/TEMC.2012.2186455
24. Yang, X., Z. Zhang, F. Ning, C. Jiao, and L. Chen, "Shielding effectiveness analysis of the conducting spherical shell with a circular aperture against low-frequency magnetic fields," IEEE Access, Vol. 8, 79844-79850, 2020.
doi:10.1109/ACCESS.2020.2988709
25. MWS. Framingham, MA, , USA, 2015. CST Computer Simulation Technology, 2011. [Online]. Available: http://www.cst.com/Content/Products/MWS/Overview.aspx.