Vol. 117
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-22
Low-Frequency Magnetic Shielding of Double-Layer Conducting Plates with Periodic Apertures: Experimental Observation of Great Improvement of Shielding Effectiveness by Slightly Separating the Two Plates
By
Progress In Electromagnetics Research M, Vol. 117, 47-57, 2023
Abstract
This article focuses on the low-frequency magnetic shielding of double-layer conducting plates with periodic circular apertures. The shielding effectiveness (SE) is measured as the insertion loss of the plates when they are placed between a pair of coaxial loops, one for magnetic field emission and the other for receiving. Our experimental results show that the SE sharply increases with the layer-to-layer spacing increasing from zero to the aperture diameter. For aluminum plates with 1 mm thickness, 20 mm unit cell and 10 mm aperture diameter, the enhancement is approximately 10 dB and 20 dB for 3 mm and 9 mm spacing, respectively. In addition, the effect of the lateral deviation on the SE is evident only if the spacing is smaller than the aperture diameter.
Citation
Feiyan Zhou, Yan Wu, Lingyun Gu, Xuefeng Bai, Yan Wu, Yang Wang, Dingyu Qin, and Chongqing Jiao, "Low-Frequency Magnetic Shielding of Double-Layer Conducting Plates with Periodic Apertures: Experimental Observation of Great Improvement of Shielding Effectiveness by Slightly Separating the Two Plates," Progress In Electromagnetics Research M, Vol. 117, 47-57, 2023.
doi:10.2528/PIERM23022604
References

1. Frikha, A., M. Bensetti, L. Pichon, et al. "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Trans. Electromagn. Compat., Vol. 57, No. 6, 1481-1490, Dec. 2015.
doi:10.1109/TEMC.2015.2463677

2. Lee, S., D.-H. Kim, Y. Cho, et al. "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system," IEEE Trans. Ind. Electron., Vol. 66, No. 6, 4356-4367, Jun. 2019.
doi:10.1109/TIE.2018.2851988

3. Zhou, Y., L. Zhang, S. Xiu, and W. Hao, "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, Sep. 2019.
doi:10.1109/ACCESS.2019.2939197

4. Zhang, J., T. Lu, W. Zhang, X. Bian, and X. Cui, "Characteristics and in uence factors of radiated disturbance induced by IGBT switching," IEEE Trans. Power Electron., Vol. 34, No. 12, 11833-11842, Dec. 2019.
doi:10.1109/TPEL.2019.2913463

5. Ma, D., M. Ding, J. Lu, et al. "Study of shielding ratio of cylindrical ferrite enclosure withgaps and holes," IEEE Sens. J., Vol. 19, No. 15, 6085-6092, Aug. 2019.
doi:10.1109/JSEN.2019.2904719

6. Giaccone, L., V. Cirimele, and A. Canova, "Mitigation solutions for the magnetic field produced by MFDC spot welding guns," IEEE Trans. Electromagn. Compat., Vol. 62, No. 1, 83-92, Feb. 2020.
doi:10.1109/TEMC.2018.2877805

7. Kellogg, J., "Navigating the selection of magnetic resonance imaging shielding systems," IEEE Trans. Electromagn. Compat., Vol. 3, No. 1, 43-46, Mar. 2021.

8. Salvador, K., D. Harmel, L. Oliveira, S. Cabral, and H. Almaguer, "Study of the effectiveness of magnetic shielding for compact power transformers used on mobile applications," IEEE Latin Am. Trans., Vol. 18, No. 6, 1034-1040, Jun. 2020.
doi:10.1109/TLA.2020.9099680

9. Frikha, A., M. Bensetti, F. Duval, N. Benjelloun, F. Lafon, and L. Pichon, "A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field," IEEE Trans. Magn., Vol. 51, No. 3, 1-4, Mar. 2015.
doi:10.1109/TMAG.2014.2362953

10. Lovat, G., P. Burghignoli, R. Araneo, E. Stracqualursi, and S. Celozzi, "Closed-form LF magnetic shielding effectiveness of thin planar screens in coplanar loops configuration," IEEE Trans. Electromagn. Compat., Vol. 63, No. 2, 631-635, Apr. 2021.
doi:10.1109/TEMC.2020.3007864

11. Jiao, C., F. Ning, X. Yang, et al. "Low-frequency magnetic shielding of planar shields: A unified wave impedance formula for the transmission line analogy," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1046-1057, Feb. 17, 2021.
doi:10.1109/TEMC.2021.3052779

12. Zhang, Z., X. Yang, C. Jiao, Y. Yang, and J. Wang, "Analytical model for low-frequency magnetic field penetration through a circular aperture on a perfect electric conductor plate," IEEE Trans. Electromagn. Compat., Vol. 63, No. 5, 1599-1604, Apr. 6, 2021.
doi:10.1109/TEMC.2021.3065064

13. Qin, D. and C. Jiao, "Low-frequency magnetic shielding of planar screens: Effects of loop radius and loop-to-loop distance," IEEE Trans. Electromagn. Compat., Vol. 64, No. 2, 367-377, 2022.
doi:10.1109/TEMC.2021.3118543

14. Park, H. H., "Analytic magnetic shielding effectiveness of multiple long slots on a metal plate using rectangular loops," IEEE Trans. Electromagn. Compat., Vol. 62, No. 5, 1971-1979, Oct. 2020.
doi:10.1109/TEMC.2019.2954671

15. Bai, W., F. Ning, X. Yang, C. Jiao, and L. Chen, "Low frequency magnetic shielding effectiveness of a conducting plate with periodic apertures," IEEE Trans. Electromagn. Compat., Vol. 63, No. 1, 30-37, Feb. 2021.
doi:10.1109/TEMC.2020.2986249

16. Criel, S., L. Martens, and D. De Zutter, "Theoretical and experimental near-field characterization of perforated shields," IEEE Trans. Electromagn. Compat., Vol. 36, No. 3, 161-168, Aug. 1994.
doi:10.1109/15.305460

17. Araneo, R., G. Lovat, and S. Celozzi, "Shielding effectiveness of periodic screens against finite high-impedance near-field sources," IEEE Trans. Electromagn. Compat., Vol. 53, No. 3, 706-716, Aug. 2011.
doi:10.1109/TEMC.2010.2081367

18. Sarto, M. S., S. Greco, and A. Tamburrano, "Shielding effectiveness of protective metallic wire meshes: EM modeling and validation," IEEE Trans. Electromagn. Compat., Vol. 56, No. 3, 615-621, Jun. 2014.
doi:10.1109/TEMC.2013.2292715

19. Hyun, S., I. Jung, I. Hong, C. Jung, E. Kim, and J. Yook, "Modified sheet inductance of wire mesh using effective wire spacing," IEEE Trans. Electromagn. Compat., Vol. 58, No. 3, 911-914, Jun. 2016.
doi:10.1109/TEMC.2015.2502603

20. Naranjo-Villamil, S., C. Guiffaut, J. Gazave, and A. Reineix, "Lightning-induced magnetic fields inside grid-like shields: An improved formula complemented by a polynomial chaos expansion," IEEE Trans. Electromagn. Compat., Vol. 63, No. 2, 558-570, Apr. 2021.
doi:10.1109/TEMC.2021.3056320

21. Bai, W., A. Guo, T. Li, R. Cheng, and C. Jiao, "A multi-stage model for the electromagnetic shielding effectiveness prediction of an infinite conductor plane with periodic apertures," IEEE Access, Vol. 7, 61896-61903, 2019.
doi:10.1109/ACCESS.2019.2916145

22. Sun, X., B. Wei, Y. Li, and J. Yang, "A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 102-110, Sep. 1, 2021.
doi:10.1109/TEMC.2021.3104119

23. Andrieu, G., et al. "Homogenization of composite panels from a near-field magnetic shielding effectiveness measurement," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 700-703, Jun. 2012.
doi:10.1109/TEMC.2012.2186455

24. Yang, X., Z. Zhang, F. Ning, C. Jiao, and L. Chen, "Shielding effectiveness analysis of the conducting spherical shell with a circular aperture against low-frequency magnetic fields," IEEE Access, Vol. 8, 79844-79850, 2020.
doi:10.1109/ACCESS.2020.2988709

25. MWS. Framingham, MA, , USA, 2015. CST Computer Simulation Technology, 2011. [Online]. Available: http://www.cst.com/Content/Products/MWS/Overview.aspx.