Vol. 21
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-04-14
Dual-Antenna System Composed of Patch Array and Planar Yagi Antenna for Elimination of Blindness in Cellular Mobile Communications
By
Progress In Electromagnetics Research C, Vol. 21, 87-97, 2011
Abstract
For a cellular mobile communication system in narrow streets of urban areas, blind spots caused by shadowing of high buildings are a significant problem. In this research, a new dual-antenna system (DAS) is proposed, including a power transmission network, a receiving and a reradiating antenna to realize a broad-angle beam control. An equivalent bi-static radar cross section (BRCS) is deduced to present a theoretical explanation to the operating principles of the DAS. The main advantage of this design over ordinary reflectarray antenna as a passive RF booster is its flexible beam control capabilities. The simulated BRCS of the proposed DAS, composed of a microstrip patch array and a planar Yagi-Uda antenna, is given along with that of a metal plate of identical dimensions for comparison. purposes.
Citation
Shi-Wei Qu, Qingyong Chen, Qiang Chen, Jianfeng Li, Qiaowei Yuan, and Kunio Sawaya, "Dual-Antenna System Composed of Patch Array and Planar Yagi Antenna for Elimination of Blindness in Cellular Mobile Communications," Progress In Electromagnetics Research C, Vol. 21, 87-97, 2011.
doi:10.2528/PIERC11021702
References

1. Li, L., Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, "Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 881-885, 2009.
doi:10.1109/LAWP.2009.2028298

2. Balanis, C. A., "Fundamental parameters of antennas," Antenna Theory Analysis and Design, 27-132, John Wiley & Sons, 2005.

3. Alhalabi, R. A. and G. M. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Trans. Antennas Propagat., Vol. 56, No. 10, 3136-3142, 2008.
doi:10.1109/TAP.2008.929506

4. Yang, S. L. and K. Luk, "Wideband folded-patch antennas fed by L-shaped probe," Microw. Opt. Tech. Lett., Vol. 45, No. 4, 352-355, 2005.
doi:10.1002/mop.20821

5. Lai, H.-W. and K. Luk, "Design and study of wide-band patch antenna fed by meandering probe," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 564-571, 2006.
doi:10.1109/TAP.2005.863091

6. Fooks, E. H. and R. A. Zakarevicius, Microwave Engineering Using Microstrip Circuits, Prentice Hall, 1990.

7. HFSS: High Frequency Structure Simulator Based on the Finite Element Method, v9.2, Ansoft Corp.

8. Wang, L., S.-W. Qu, J. Li, Q. Chen, Q. Yuan, and K. Sawaya, "Experimental investigation of MIMO performance using dual-antenna system (DAS) in multipath environment," IEEE Antennas Wireless Propagat. Lett., Feb. 2011.