Vol. 25
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-10-19
Packaged CMOS Transmission Line Based Active Bandpass Filter with High Stopband Suppression
By
Progress In Electromagnetics Research C, Vol. 25, 1-14, 2012
Abstract
This paper presents a packaged third-order transmission line based (TL-based) active bandpass filter (BPF), which is fabricated using Silterra's standard 0.18-μm CMOS 1P6M technology, with high stopband suppression. The active compensating circuit, which produces differential negative conductance, improves the quality factor (Q factor) of TL-based resonator and suppresses the spurious resonances at even-harmonic frequencies. The spurious responses are also shifted towards higher frequencies by applying a capacitively loaded TL resonator method to the filter design. Additionally, an inductive parasitic effect introduced by the package is investigated and reduced to achieve the minimum impact on the stopband suppression. Measurement results indicate that the prototype has an insertion loss of 0.95 dB at a central frequency (f0) of 1.53 GHz with a 3-dB bandwidth of 3.1%, while a current of 8 mA is consumed from 3.0 V. The stopband suppressions at 2f0 and 3f0 are 44.57 dB and 52.78 dB, respectively. Furthermore, the suppression exceeds 35 dB from 1.08f0 to 10.05f0.
Citation
Meng-Lin Lee Hsien-Shun Wu Ching-Kuang Tzuang , "Packaged CMOS Transmission Line Based Active Bandpass Filter with High Stopband Suppression," Progress In Electromagnetics Research C, Vol. 25, 1-14, 2012.
doi:10.2528/PIERC11080908
http://www.jpier.org/PIERC/pier.php?paper=11080908
References

1. Hsiao, , C.-Y. , Y.-C. Chiang, and , "A miniaturized open-loop resonator filter constructed with floating plate overlays," Progress In Electromagnetics Research C,, Vol. 14, , 131-145, 2010.
doi:10.2528/PIERC10051405

2. Dai, G.-L. , M.-Y. Xia, and , "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, , Vol. 100, , 235-243, , 2010.
doi:10.2528/PIER09120401

3. Chien, , H.-Y., , T.-M. Shen, T.-Y. Huang, W.-H. Wang, and R.-B.Wu, , "Miniaturized bandpass filter with double-folded substrate integrated waveguide resonators in LTCC," IEEE Trans. Microw. Theory Tech., , Vol. 57, No. 7, 1774-1782, 2009.
doi:10.1109/TMTT.2009.2022591

4. Lee, , Y. C. , T. W. Kim, and , "A low-loss patch LTCC BPF for 60 GHz system-on-package (SoP) applications," Progress In Electromagnetics Research Letters, , Vol. 12, 183-189, , 2009.
doi:10.2528/PIERL09110903

5. Kuo, J.-T., , S.-C. Tang, and S.-H. Lin, , "Quasi-elliptic function bandpass ¯lter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, , Vol. 114, 395-405, , 2011.

6. Deng, , H.-W., , Y.-J. Zhao, X.-S. Zhang, L. Zhang, and S.-P. Gao, "Compact quintuple-mode UWB bandpass filter with good out-of-band rejection ," Progress In Electromagnetics Research Letters,, Vol. 14, , 111-117, , 2010.
doi:10.2528/PIERL10030912

7. Wang, S. and R.-X. Wang, , "A tunable bandpass filter using Q-enhanced and semi-passive inductors at S-band in 0.18-um CMOS," Progress In Electromagnetics Research B, Vol. 28, 55-73, 2011.

8. Kulyk, J., J. Haslett, and , "A monolithic CMOS 2368 +30MHz transformer based Q-enhanced series-C coupled resonator band- pass filter," IEEE J. Solid-State Circuits, , Vol. 41, No. 2, 362-374, 2006.
doi:10.1109/JSSC.2005.862348

9. Tzuang, , C.-K. C., , H.-H. Wu, H.-S. Wu, and J. Chen, "CMOS active bandpass ¯lter using compacted synthetic quasi-TEM lines at C-band," ," IEEE Trans. Microw. Theory Tech.,, Vol. 54, No. 12, 4548-4555, 2006.
doi:10.1109/TMTT.2006.881507

10. Soorapanth, , T. , S. S. Wong, and , "A 0-dB IL 2140 +30MHz bandpass ¯lter utilizing Q-enhanced spiral inductors in standard CMOS," IEEE J. Solid-state Circuits, Vol. 37, No. 5, 579-586, 2002.
doi:10.1109/4.997850

11. Georgescu, , B., , I. G. Finvers, and F. Ghannouchi, "2 GHz Q-enhanced active filter with low passband distortion and high dynamic range," IEEE J. Solid-State Circuits, , Vol. 41, No. 9, 2029-2039, , 2006.
doi:10.1109/JSSC.2006.880618

12. Aparin, , V. , P. Katzin, and , "Active GaAs MMIC band-pass filters with automatic frequency tuning and insertion loss control," IEEE J. Solid-State Circuits, , Vol. 30, No. 10, 1068-1073, , 1995.
doi:10.1109/4.466077

13. Lee, , M.-L., , H.-S.Wu, and C.-K. C. Tzuang, , "1.58 GHz third-order CMOS active bandpass filter with improved passband flatness," IEEE Trans. Microw. Theory Tech.,, Vol. 59, No. 9, 2275-2284, 2011.
doi:10.1109/TMTT.2011.2160196

14. Wong, , B. P., , A. Mittal, Y. Cao, and G. Starr, , Nano CMOS Circuit and Physical Design, , 172-219, John Wiley & Sons, Inc., , New York, 2005.
doi:10.1002/0471653829.ch5

15. Matthaei, G. L., , L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, , 427-440, Artech House, , Norwood, 1980.

16. Yeung, , L. K., , K.-L. Wu, and Y. E. Wang, , "Low-temperature co¯red ceramic LC ¯lters for RF applications," IEEE Microw. Mag., Vol. 9, No. 5, 118-128, 2008.
doi:10.1109/MMM.2008.927634

17. Irwin, J. D., C.-H. Wu, and , Basic Engineering Circuit Analysis , 6th Ed., 729, , John Wiley & Sons, Inc., New York, , 1999.