Vol. 70
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-12-05
Comprehensive Analysis of Shielding Effectiveness of Enclosures with Apertures: Parametrical Approach
By
Progress In Electromagnetics Research C, Vol. 70, 9-22, 2016
Abstract
The main section of this paper comprehensively analyzes electrical shielding effectiveness (ESE) of enclosures with rectangular apertures for producing valuable information used in electromagnetic interference and compatibility guiding enclosure designers of electronic devices. Firstly, results of conventional analytical equivalent circuit model, measurement and simulation with computer simulating technology (CSTTM) of ESE for an enclosure with a single aperture size are compared to improve closeness in different models at 0-1 GHz. After getting a suitable simulation model, all possible parameters with detailed cases are examined to approach beneficial conclusions. Especially, size of enclosure, aperture size, aperture shape, configuration and number of apertures, probe position parameters that affect ESE are investigated. Also, some double parameters are analyzed together to achieve detailed review as two enclosure dimensions, two aperture dimensions and probe position with enclosure depth. Therefore, three-dimensional graphical investigations are performed. Obtained results of these parametric approaches are explained with acceptable reasons. Finally, detailed and itemized comments are given about simulated results of ESE parameters, which are collected from previous sections.
Citation
Ibrahim Bahadir Basyigit, and Mehmet Fatih Caglar, "Comprehensive Analysis of Shielding Effectiveness of Enclosures with Apertures: Parametrical Approach," Progress In Electromagnetics Research C, Vol. 70, 9-22, 2016.
doi:10.2528/PIERC16072503
References

1. Ansari, M. S., S. V. G. Ravindranath, M. S. Bhatia, B. Singh, and C. P. Navathe, "Electromagnetic coupling through apertures and shielding effectiveness of a metallic enclosure housing electro-optic pockels cell in a high power laser system," International Journal of Applied Electromagnetics and Mechanics, Vol. 42, No. 2, 191-199, 2013.

2. IEEE "Standard method for measuring the effectiveness of electromagnetic shielding enclosures," IEEE Std 299TM-2006 (R2012), 2012.

3. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. Ganley, A. Marvin, S. Porter, and D. W. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
doi:10.1109/15.709422

4. Solin, J. R., "Formula for the field excited in a rectangular cavity with an aperture and lossy walls," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 2, 203-209, 2015.
doi:10.1109/TEMC.2014.2368124

5. Nobakhti, M., P. Dehkhoda, and A. Tavakoli, "Improved modal method of moments technique to compensate the effect of wall dimension in shielding effectiveness evaluation," IET Science, Measurement & Technology, Vol. 8, No. 1, 17-22, 2014.
doi:10.1049/iet-smt.2012.0103

6. Liu, E., P.-A. Du, and B. Nie, "An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 589-598, 2014.
doi:10.1109/TEMC.2013.2289742

7. Hao, C. and D. Li, "Simplified model of shielding effectiveness of a cavity with apertures on different sides," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 335-342, 2014.
doi:10.1109/TEMC.2013.2280152

8. Belkacem, F. T., M. Bensetti, A.-G. Boutar, D. Moussaoui, M. Djennah, and B. Mazari, "Combined model for shielding effectiveness estimation of a metallic enclosure with apertures," IET Science, Measurement & Technology, Vol. 5, No. 3, 88-95, 2011.
doi:10.1049/iet-smt.2010.0040

9. Nie, B.-L. and P.-A. Du, "An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 357-364, 2015.
doi:10.1109/TEMC.2014.2383438

10. Wang, C.-C., C.-Q. Zhu, X. Zhou, and Z.-F. Gu, "Calculation and analysis of shielding effectiveness of the rectangular enclosure with apertures," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 6, 535-545, 2013.

11. Karami, H., R. Moini, S. H. Sadeghi, H. Maftooli, M. Mattes, and J. R. Mosig, "Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1412-1419, 2014.
doi:10.1109/TEMC.2014.2315719

12. Hussein, K. F., "Spatial filter housing for enhancement of the shielding effectiveness of perforated enclosures with lossy internal coating: Broadband characterization," International Journal of Antennas and Propagation, Vol. 2, No. 8, 2013.

13. Xiong, R., B. Chen, Z. Y. Cai, and Q. Chen, "A numerically efficient method for the FDTD analysis of the shielding effectiveness of large shielding enclosures with thin-slots," International Journal of Applied Electromagnetics and Mechanics, Vol. 40, No. 4, 251-258, 2012.

14. Azizi, H., F. TaharBelkacem, D. Moussaoui, H. Moulai, A. Bendaoud, and M. Bensetti, "Electromagnetic interference from shielding effectiveness of a rectangular enclosure with apertures– circuital approach, FDTD and FIT modeling," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 4, 494-514, 2014.
doi:10.1080/09205071.2013.875862

15. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "On shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

16. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803

17. Dehkhoda, P., A. Tavakoli, and M. Azadifar, "Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 792-805, 2012.
doi:10.1109/TEMC.2012.2188855

18. Basyigit, I. B., M. F. Caglar, and S. Helhel, "Magnetic shielding effectiveness and simulation analysis of metalic enclosures with apertures," Proceedings of the 9th International Conference on Electrical and Electronics Engineering (ELECO), 328-331, Bursa, Turkey, November 2015.

19. Basyigit, I. B., P. D. Tosun, S. Ozen, and S. Helhel, "An affect of the aperture length to aperture width ratio on broadband shielding effectiveness," Proceedings of the XXXth URSI General Assembly and Scientific Symposium, 1-4, Istanbul, Turkey, August–November 2011.

20., C. S. Technology, CST-EMC Studio, 2015, Available: www.cst.com.

21. Celozzi, S. and R. Araneo, "Alternative definitions for the time-domain shielding effectiveness of enclosures," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 482-485, 2014.
doi:10.1109/TEMC.2013.2282713

22. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 2012.

23. Balanis, C. A., Antenna Theory Analysis and Design, Wiley, New York, 2005.