Vol. 73
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-14
Microstrip Magnetic Dipole Yagi Antenna with Enhanced Impedance Bandwidth and Reduced Size for Wideband Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 73, 105-113, 2017
Abstract
A microstrip magnetic dipole Yagi antenna with the feasibility of obtaining a wider bandwidth and relatively smaller size is proposed and demonstrated. The proposed antenna, consisting of a reflector, a driver with backed soldered SMA connector, a coupling microstrip line with three rectangular slots and three modified directors, is designed and fabricated. Good agreement between simulated and measured results is observed. Simulated and measured results reveal that the proposed antenna can provide an impedance bandwidth of 19.2% (4.95-6 GHz). Meanwhile, within the impedance bandwidth, the radiation pattern of the proposed antenna has front-to-back (F/B) ratios ranging from 10.1 dB to 26.1 dB, cross-polarization levels in the endfire direction from 47.1 dB to 73.0 dB, peak gains from 6.4 dBi to 10.4 dBi with an average peak gain of 9.6 dBi and endfire gains from 2.2 dBi to 4.3 dBi with an average endfire gain of 3.1 dBi. Additionally, the measured bandwidth of 19.2% (4.95-6 GHz) not only meets the need for certain Wi-Fi (5.2/5.8 GHz) or WiMAX (5.5 GHz) band communication application, but also provides the potential to implement multiservice transmission.
Citation
Tian Li Fu-Shun Zhang Fei Gao Qi Zhang Yan-Li Guo , "Microstrip Magnetic Dipole Yagi Antenna with Enhanced Impedance Bandwidth and Reduced Size for Wideband Wireless Applications," Progress In Electromagnetics Research C, Vol. 73, 105-113, 2017.
doi:10.2528/PIERC17021902
http://www.jpier.org/PIERC/pier.php?paper=17021902
References

1. Ge, L. and K.-M. Luk, "A three-element linear magneto-electric dipole array with beamwidth reconfiguration," IEEE Antennas Wireless Propag. Lett., Vol. 14, 28-31, Feb. 2015.
doi:10.1109/LAWP.2014.2354692

2. Ta, S.-X. and I. Park, "Crossed dipole loaded with magneto-electric dipole for wideband and wide-beam circularly polarized radiation," IEEE Antennas Wireless Propag. Lett., Vol. 14, 358-361, Feb. 2015.
doi:10.1109/LAWP.2014.2363944

3. Abbosh, A., "Ultra-wideband Quasi-Yagi antenna using dual-resonant driver and integrated balun of stepped impedance coupled structure," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3885-3888, Jul. 2013.
doi:10.1109/TAP.2013.2257642

4. Yang, L., J.-D. Zhang, and W. Wu, "Wideband microstrip series-fed magnetic dipole array antenna," Electron. Lett., Vol. 50, No. 24, 1793-1795, Nov. 2014.
doi:10.1049/el.2014.3434

5. Wen, Y.-Q., B.-Z. Wang, and X. Ding, "Planar microstrip endfire antenna with multiport feeding," IEEE Antennas Wireless Propag. Lett., Vol. 15, 556-559, 2016.
doi:10.1109/LAWP.2015.2458013

6. Liu, J.-H. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1140-1147, Mar. 2013.
doi:10.1109/TAP.2012.2230239

7. Zhang, Z., X.-Y. Cao, J. Gao, S.-J. Li, and X. Liu, "Compact microstrip magnetic Yagi antenna and array with vertical polarization based on substrate integrated waveguide," Progress In Electromagnetics Research C, Vol. 59, 135-141, 2015.
doi:10.2528/PIERC15090907

8. Zhang, Z., G. Zhang, X.-Y. Cao, J. Gao, H.-H. Yang, and J.-H. Wu, "Compact microstrip Yagi antenna based on half-mode substrate integrated waveguide," 2016 IEEE International Coference on Microwave and Millimeter Wave Technology, Vol. 2, 737-739, 2016.
doi:10.1109/ICMMT.2016.7762426

9. Liu, J.-H., S.-Y. Zheng, Y.-X. Li, and Y.-L. Long, "Broadband monopolar microstrip patch antenna with shorting vias and coupled ring," IEEE Antennas Wireless Propag. Lett., Vol. 13, 39-42, 2014.

10. Deshmukh, A. A. and K. P. Ray, "Formulation of resonance frequencies for dual-band slotted rectangular microstrip antennas," IEEE Mag. on Antenna Propag., Vol. 54, 78-97, 2012.
doi:10.1109/MAP.2012.6309159

11. Wu, J. N., Z.-Q. Zhao, Z.-P. Nie, and Q.-H. Liu, "Design of a wideband planar printed quasi-Yagi antenna using stepped connection structure," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3431-3435, Jun. 2014.
doi:10.1109/TAP.2014.2314471