Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Ultra-Broadband Absorption with Gradient Pyramidal Metamaterials

By Yuexia Liu, Wenliang Guo, and Tiancheng Han
Progress In Electromagnetics Research C, Vol. 78, 217-224, 2017


We propose a novel absorber by integrating four different-sized pyramidal metamaterials into a unit cell, which leads to a super broadband absorption by properly selecting the geometrical parameters for each pyramid. It is found that in such a design strategy, the high-order modes may be excited and further enhanced by multi-layer overlapping between adjacent unit cells. The as-designed MA, which consists of 13 pairs of alternating metal-dielectric layers with a total thickness of 4.13 mm, shows an absorption of above 90% in the whole frequency range of 7-21.5 GHz. The full width at half maximum is 101.8%, and the ratio of operational bandwidth to thickness achieves 7. The proposed MA is 30% broader and 5.2% thinner than previously reported absorbers working in the same spectral region. Numerical result shows that the proposed absorber is independent of the polarization. The absorption decreases with fluctuations as the incident angle increases but remains quasi-constant up to relatively large angles. Such a design shows great promise for a broad range of applications at microwave frequencies, and the proposed scheme may be extended to the visible, infrared, terahertz spectral regions.


Yuexia Liu, Wenliang Guo, and Tiancheng Han, "Ultra-Broadband Absorption with Gradient Pyramidal Metamaterials," Progress In Electromagnetics Research C, Vol. 78, 217-224, 2017.


    1. Li, W. and J. Valentine, "Metamaterial perfect absorber based hot electron photodetection," Nano Lett., Vol. 14, 3510-3514, 2014.

    2. Song, Y. M., Y. Xie, V. Malyarchuk, J. L. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, and R. Li, "Digital cameras with designs inspired by the arthropod eye," Nature, Vol. 497, 95-99, 2013.

    3. Yin, X., L. Chen, and X. Li, "Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays," J. Lightwave Technol., Vol. 33, 3704-3710, 2015.

    4. Xiao, S., T. Wang, Y. Liu, C. Xu, and X. Yan, "Tunable light trapping and absorption enhancement with graphene ring arrays," Phys. Chem. Chem. Phys., Vol. 18, 26661-26669, 2016.

    5. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, "Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications," Plasmonics, Vol. 12, 1-8, 2017.

    6. El-Toukhy, Y. M., M. F. O. Hameed, M. Hussein, and S. S. A. Obayya, "Tapered plasmonic nanoantennas for energy harvesting applications," Nanoplasmonics — Fundamentals and Applications, 2017, DOI: 10.5772/67418.

    7. Ni, X., Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science, Vol. 349, 1310-1314, 2015.

    8. Chen, Y., P. Han, and X.-C. Zhang, "Tunable broadband antireflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, 041106, 2009.

    9. Kim, D.-H., D.-S. Kim, S. Hwang, and J.-H. Jang, "Surface relief structures for a flexible broadband terahertz absorber," Opt. Express, Vol. 20, 16815-16822, 2012.

    10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

    11. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012.

    12. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," J. Nanophotonics, Vol. 8, 11, 2014.

    13. Hedayati, M. K., M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410, 2011.

    14. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.

    15. Peng, X., B. Wang, S. Lai, D. Zhang, and J. Teng, "Ultrathin multi-band planar metamaterial absorber based on standing wave resonances," Opt. Express, Vol. 20, 27756-27765, 2012.

    16. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett., Vol. 36, 1524-1526, 2011.

    17. Zhu, P. and L. J. Guo, "High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack," Appl. Phys. Lett., Vol. 101, 241116, 2012.

    18. Cui, Y., K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.

    19. Azad, A. K., W. J. Kortkamp, M. Sykora, N. R. Weissebernstein, T. S. Luk, and A. J. Taylor, "Metasurface broadband solar absorber," Sci. Rep., Vol. 6, 20347, 2016.

    20. Koechlin, C., P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, "Total routing and absorption of photons in dual color plasmonic antennas," Appl. Phys. Lett., Vol. 99, 241104, 2011.

    21. Cui, Y., J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.

    22. Bouchon, P., C. Koechlin, F. Pardo, R. Ha¨ıdar, and J. L. Pelouard, "Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas," Opt. Lett., Vol. 37, 1038-1040, 2012.

    23. Feng, R., J. Qiu, L. Liu, W. Ding, and L. Chen, "Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling," Opt. Express, Vol. 22, A1713-A1724, 2014.

    24. Guo, W., Y. Liu, and T. Han, "Ultra-broadband infrared metasurface absorber," Opt. Express, Vol. 24, 20586-20592, 2016.

    25. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," JOSA B, Vol. 27, 498-504, 2010.

    26. Amin, M., M. Farhat, and H. Bagci, "An ultra-broadband multilayered graphene absorber," Opt. Express, Vol. 21, 29938-29948, 2013.

    27. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.

    28. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015.

    29. Peng, Y., X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, "Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a bouble-layered grating structure," Opt. Express, Vol. 23, 2032-2039, 2015.

    30. Li, S., J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, "Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances," J. Appl. Phys., Vol. 116, 043710, 2014.

    31. Yang, J. and Z. X. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas Wireless Propag. Lett., Vol. 6, 388-391, 2007.

    32. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas Wireless Propag. Lett., Vol. 11, 748-751, 2012.

    33. Yoo, Y. J., Y. J. Kim, P. V. Tuong, J. Y. Rhee, K.W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, "Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances," Opt. Express, Vol. 21, 32484-32490, 2013.

    34. Jiang, T., J. Zhao, and Y. Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express, Vol. 17, 170-177, 2009.

    35. Yin, X., C. Long, J. Li, H. Zhu, L. Chen, J. Guan, and X. Li, "Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays," Sci. Rep., Vol. 5, 15367, 2015.

    36. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.

    37. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Double-corrugated metamaterial surfaces for broadband microwave absorption," J. Appl. Phys., Vol. 113, 084907, 2013.

    38. Long, C., S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, "Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode," Sci. Rep., Vol. 6, 21431, 2016.

    39. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photon., Vol. 6, 259-264, 2012.