Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-10-17

Ultra-Broadband Absorption with Gradient Pyramidal Metamaterials

By Yuexia Liu, Wenliang Guo, and Tiancheng Han
Progress In Electromagnetics Research C, Vol. 78, 217-224, 2017
doi:10.2528/PIERC17081107

Abstract

We propose a novel absorber by integrating four different-sized pyramidal metamaterials into a unit cell, which leads to a super broadband absorption by properly selecting the geometrical parameters for each pyramid. It is found that in such a design strategy, the high-order modes may be excited and further enhanced by multi-layer overlapping between adjacent unit cells. The as-designed MA, which consists of 13 pairs of alternating metal-dielectric layers with a total thickness of 4.13 mm, shows an absorption of above 90% in the whole frequency range of 7-21.5 GHz. The full width at half maximum is 101.8%, and the ratio of operational bandwidth to thickness achieves 7. The proposed MA is 30% broader and 5.2% thinner than previously reported absorbers working in the same spectral region. Numerical result shows that the proposed absorber is independent of the polarization. The absorption decreases with fluctuations as the incident angle increases but remains quasi-constant up to relatively large angles. Such a design shows great promise for a broad range of applications at microwave frequencies, and the proposed scheme may be extended to the visible, infrared, terahertz spectral regions.

Citation


Yuexia Liu, Wenliang Guo, and Tiancheng Han, "Ultra-Broadband Absorption with Gradient Pyramidal Metamaterials," Progress In Electromagnetics Research C, Vol. 78, 217-224, 2017.
doi:10.2528/PIERC17081107
http://www.jpier.org/PIERC/pier.php?paper=17081107

References


    1. Li, W. and J. Valentine, "Metamaterial perfect absorber based hot electron photodetection," Nano Lett., Vol. 14, 3510-3514, 2014.
    doi:10.1021/nl501090w

    2. Song, Y. M., Y. Xie, V. Malyarchuk, J. L. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, and R. Li, "Digital cameras with designs inspired by the arthropod eye," Nature, Vol. 497, 95-99, 2013.
    doi:10.1038/nature12083

    3. Yin, X., L. Chen, and X. Li, "Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays," J. Lightwave Technol., Vol. 33, 3704-3710, 2015.
    doi:10.1109/JLT.2015.2453995

    4. Xiao, S., T. Wang, Y. Liu, C. Xu, and X. Yan, "Tunable light trapping and absorption enhancement with graphene ring arrays," Phys. Chem. Chem. Phys., Vol. 18, 26661-26669, 2016.
    doi:10.1039/C6CP03731C

    5. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, "Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications," Plasmonics, Vol. 12, 1-8, 2017.
    doi:10.1007/s11468-016-0221-6

    6. El-Toukhy, Y. M., M. F. O. Hameed, M. Hussein, and S. S. A. Obayya, "Tapered plasmonic nanoantennas for energy harvesting applications," Nanoplasmonics — Fundamentals and Applications, 2017, DOI: 10.5772/67418.

    7. Ni, X., Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science, Vol. 349, 1310-1314, 2015.
    doi:10.1126/science.aac9411

    8. Chen, Y., P. Han, and X.-C. Zhang, "Tunable broadband antireflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, 041106, 2009.
    doi:10.1063/1.3075059

    9. Kim, D.-H., D.-S. Kim, S. Hwang, and J.-H. Jang, "Surface relief structures for a flexible broadband terahertz absorber," Opt. Express, Vol. 20, 16815-16822, 2012.
    doi:10.1364/OE.20.016815

    10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    11. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012.

    12. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," J. Nanophotonics, Vol. 8, 11, 2014.
    doi:10.1117/1.JNP.8.083085

    13. Hedayati, M. K., M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410, 2011.
    doi:10.1002/adma.201102646

    14. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.
    doi:10.1063/1.3442904

    15. Peng, X., B. Wang, S. Lai, D. Zhang, and J. Teng, "Ultrathin multi-band planar metamaterial absorber based on standing wave resonances," Opt. Express, Vol. 20, 27756-27765, 2012.
    doi:10.1364/OE.20.027756

    16. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett., Vol. 36, 1524-1526, 2011.
    doi:10.1364/OL.36.001524

    17. Zhu, P. and L. J. Guo, "High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack," Appl. Phys. Lett., Vol. 101, 241116, 2012.
    doi:10.1063/1.4771994

    18. Cui, Y., K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
    doi:10.1021/nl204118h

    19. Azad, A. K., W. J. Kortkamp, M. Sykora, N. R. Weissebernstein, T. S. Luk, and A. J. Taylor, "Metasurface broadband solar absorber," Sci. Rep., Vol. 6, 20347, 2016.
    doi:10.1038/srep20347

    20. Koechlin, C., P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, "Total routing and absorption of photons in dual color plasmonic antennas," Appl. Phys. Lett., Vol. 99, 241104, 2011.
    doi:10.1063/1.3670051

    21. Cui, Y., J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.
    doi:10.1063/1.3672002

    22. Bouchon, P., C. Koechlin, F. Pardo, R. Ha¨ıdar, and J. L. Pelouard, "Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas," Opt. Lett., Vol. 37, 1038-1040, 2012.
    doi:10.1364/OL.37.001038

    23. Feng, R., J. Qiu, L. Liu, W. Ding, and L. Chen, "Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling," Opt. Express, Vol. 22, A1713-A1724, 2014.
    doi:10.1364/OE.22.0A1713

    24. Guo, W., Y. Liu, and T. Han, "Ultra-broadband infrared metasurface absorber," Opt. Express, Vol. 24, 20586-20592, 2016.
    doi:10.1364/OE.24.020586

    25. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," JOSA B, Vol. 27, 498-504, 2010.
    doi:10.1364/JOSAB.27.000498

    26. Amin, M., M. Farhat, and H. Bagci, "An ultra-broadband multilayered graphene absorber," Opt. Express, Vol. 21, 29938-29948, 2013.
    doi:10.1364/OE.21.029938

    27. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.
    doi:10.1063/1.4890521

    28. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015.
    doi:10.1063/1.4918289

    29. Peng, Y., X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, "Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a bouble-layered grating structure," Opt. Express, Vol. 23, 2032-2039, 2015.
    doi:10.1364/OE.23.002032

    30. Li, S., J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, "Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances," J. Appl. Phys., Vol. 116, 043710, 2014.
    doi:10.1063/1.4891716

    31. Yang, J. and Z. X. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas Wireless Propag. Lett., Vol. 6, 388-391, 2007.
    doi:10.1109/LAWP.2007.903496

    32. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas Wireless Propag. Lett., Vol. 11, 748-751, 2012.
    doi:10.1109/LAWP.2012.2206361

    33. Yoo, Y. J., Y. J. Kim, P. V. Tuong, J. Y. Rhee, K.W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, "Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances," Opt. Express, Vol. 21, 32484-32490, 2013.
    doi:10.1364/OE.21.032484

    34. Jiang, T., J. Zhao, and Y. Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express, Vol. 17, 170-177, 2009.
    doi:10.1364/OE.17.000170

    35. Yin, X., C. Long, J. Li, H. Zhu, L. Chen, J. Guan, and X. Li, "Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays," Sci. Rep., Vol. 5, 15367, 2015.
    doi:10.1038/srep15367

    36. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.
    doi:10.1063/1.3692178

    37. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Double-corrugated metamaterial surfaces for broadband microwave absorption," J. Appl. Phys., Vol. 113, 084907, 2013.
    doi:10.1063/1.4793631

    38. Long, C., S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, "Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode," Sci. Rep., Vol. 6, 21431, 2016.
    doi:10.1038/srep21431

    39. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photon., Vol. 6, 259-264, 2012.
    doi:10.1038/nphoton.2012.27