Vol. 85
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-09
Ultra-Thin Tunable Plasma-Metasurface Composites for Extremely Broadband Electromagnetic Shielding Applications
By
Progress In Electromagnetics Research C, Vol. 85, 91-104, 2018
Abstract
For the first time, the concept of combinational use of subwavelength metasurfaces and plasma media is introduced in this paper for being utilized in practical radio frequency (RF) shielding applications. Using an equivalent circuit model, it is demonstrated that the simultaneous use of the lossy characteristic and special dispersion of plasma in low-frequency regime and the transmission zeros provided by spatially homogeneous metasurfaces in the upper frequency band results in superior shielding performances. The designed coating layer has an ultra-thin profile while exhibiting a super wide reject band ranging from 1 to 20 GHz (|S21|<-10 dB). A fair comparison is also performed to elucidate that the proposed plasma-metasurface composite (PMC) shield outperforms the previously reported RF shielding FSSs in both bandwidth and thickness. The numerical results show that while maintaining a low profile, the shielding bandwidth of the designed PMC can be set to surprisingly include all the UHF, L, S, C, X, Ku, and K bands. Moreover, the designed coating layer provides a stable and polarization-insensitive reject band for different incident wave angles up to 45°. These superior performances, as well as the shielding tunability enabled by plasma, confirm the promising capabilities of PMC structures for various applications.
Citation
Ali Abdolali, Maryam Rajabalipanah, and Hamid Rajabalipanah, "Ultra-Thin Tunable Plasma-Metasurface Composites for Extremely Broadband Electromagnetic Shielding Applications," Progress In Electromagnetics Research C, Vol. 85, 91-104, 2018.
doi:10.2528/PIERC18040602
References

1. Agarwal, A., et al. "Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study," Fertility and Sterility, Vol. 89, No. 1, 124-128, 2008.
doi:10.1016/j.fertnstert.2007.01.166

2. Im, J. S., et al. "Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives," Materials Chemistry and Physics, Vol. 124, No. 1, 434-438, 2010.
doi:10.1016/j.matchemphys.2010.06.062

3. Rahmanzadeh, M., H. Rajabalipanah, and A. Abdolali, "Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers," Applied Optics, Vol. 57, No. 4, 959-968, 2018.
doi:10.1364/AO.57.000959

4. Cheng, Y. Z., et al. "Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure," Materials, Vol. 10, No. 11, 1241, 2017.
doi:10.3390/ma10111241

5. Vahidi, A., H. Rajabalipanah, A. Abdolali, and A. Cheldavi, "A honeycomb-like three-dimensional metamaterial absorber via super-wideband and wide-angle performances at millimeter wave and low THz frequencies," Applied Physics A, Vol. 124, No. 4, 337, 2018.
doi:10.1007/s00339-018-1752-9

6. Mehrabi, M., H. Rajabalipanah, A. Abdolali, and M. Tayarani, "Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances," Appl. Opt., Vol. 57, 3693-3703, 2018.
doi:10.1364/AO.57.003693

7. Abbaspour-Tamijani, A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1781-1789, 2004.
doi:10.1109/TMTT.2004.831572

8. Zhu, X.-C., et al. "Design of a bandwidth-enhanced polarization rotating frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 940-944, 2014.
doi:10.1109/TAP.2013.2290798

9. Lee, Y. J., et al. "Design of a high-directivity Electromagnetic Band Gap (EBG) resonator antenna using a Frequency-Selective Surface (FSS) superstrate," Microwave and Optical Technology Letters, Vol. 43, No. 6, 462-467, 2004.
doi:10.1002/mop.20502

10. Rouhi, K., H. Rajabalipanah, and A. Abdolali, "Real-time and broadband terahertz wave scattering Real-time and broadband terahertz wave scatteringes," Annalen der Physik, Vol. 530, No. 4, 1700310, 2018.
doi:10.1002/andp.201700310

11. Zhang, K., et al. "Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics," Applied Physics Letters, Vol. 108, No. 5, 053508, 2016.
doi:10.1063/1.4941545

12. Momeni, A., K. Rouhi, H. Rajabalipanah, and A. Abdolali, "An information theory-inspired strategy for design of re-programmable encrypted graphene-based coding metasurfaces at terahertz frequencies," Scientific Reports, Vol. 8, No. 1, 6200, 2018.
doi:10.1038/s41598-018-24553-2

13. Zhang, K., Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, 1351-1360, 2018.
doi:10.1364/OE.26.001351

14. Zhang, K., et al. "Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions," New Journal of Physics, Vol. 16, No. 10, 103020, 2014.
doi:10.1088/1367-2630/16/10/103020

15. Cheng, Y., et al. "An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction," Applied Physics B, Vol. 123, No. 5, 143, 2017.
doi:10.1007/s00340-017-6728-5

16. Rajabalipanah, H., H. Hemmati, A. Abdolali, and M. Amirhosseini, "Circular configuration of perforated dielectrics for ultra-broadband, wide-angle, and polarization-insensitive monostatic/bistatic RCS reduction," IET Microwaves, Antennas & Propagation, 2018.

17. Alu, A., "Mantle cloak: Invisibility induced by a surface," Physical Review B, Vol. 80, No. 24, 245115, 2009.
doi:10.1103/PhysRevB.80.245115

18. Hashemi, S. and A. Abdolali, "Room shielding with frequency-selective surfaces for electromagnetic health application," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 291-298, 2017.
doi:10.1017/S1759078716000015

19. Majidzadeh, M., C. Ghobadi, and J. Nourinia, "Ultra wide band electromagnetic shielding through a simple single layer frequency selective surface," Wireless Personal Communications, Vol. 95, No. 3, 2769-2783, 2017.
doi:10.1007/s11277-017-3960-6

20. Sivasamy, R., et al. "Polarization-independent single-layer ultra-wideband frequency-selective surface," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 93-97, IEEE, 2017.
doi:10.1017/S1759078715001439

21. Huang, H.-F., S.-F. Zhang, and Y.-H. Hu, "A novel frequency selective surface for ultra wideband antenna performance improvement," 2013 Proceedings of the International Symposium on Antennas & Propagation (ISAP), Vol. 2, 2013.

22. Mighani, M. and A. Mallahzadeh, "New UWB Shielding with frequency selective surfaces," Journal of Communication Engineering, Vol. 6, No. 1, 71-80, 2017.

23. Ranga, Y., K. P. Esselle, and L. Matekovits, "Making UWB antennas unidirectional: Phase coherence with an ultra-wide band frequency selective surface reflector," The World of Applied Electromagnetics, 227-258, Springer, Cham, 2018.
doi:10.1007/978-3-319-58403-4_10

24. Zhou, H., "Low-pass frequency selective surface with wideband high-stop response for shipboard radar," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 1, 117-122, 2013.
doi:10.1080/09205071.2013.739547

25. Kesavan, A., R. Karimian, and T. A. Denidni, "A novel wideband frequency selective surface for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1711-1714, 2016.
doi:10.1109/LAWP.2016.2528221

26. Tripathy, M. R. and D. Ronnow, "A wideband frequency selective surface reflector for 4G/X-band/Ku-band," Progress In Electromagnetics Research, Vol. 81, 151-159, 2018.

27. Zhao, J. and Y. Cheng, "Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors," Journal of Electronic Materials, Vol. 45, No. 10, 5033-5039, 2016.
doi:10.1007/s11664-016-4693-0

28. Cheng, Y., et al. "Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial ," Journal of Electronic Materials, Vol. 46, No. 2, 1293-1299, 2017.
doi:10.1007/s11664-016-5115-z

29. Feng, J., et al. "An ultrathin polarization-independent wideband metamaterial absorber for EMC applications ," 2017 International Symposium on Electromagnetic Compatibility-EMC EUROPE, IEEE, 2017.

30. Li, W., et al. "Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization," Composites Science and Technology, Vol. 145, 10-14, 2017.
doi:10.1016/j.compscitech.2017.03.009

31. Laroussi, M. and J. Reece Roth, "Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 21, No. 4, 366-372, 1993.
doi:10.1109/27.234562

32. Vidmar, R. J., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Transactions on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

33. Stalder, K. R., R. J. Vidmar, and D. J. Eckstrom, "Observations of strong microwave absorption in collisional plasmas with gradual density gradients," Journal of Applied Physics, Vol. 72, No. 11, 5089-5094, 1992.
doi:10.1063/1.352038

34. Anderson, T., et al. "Plasma frequency selective surfaces," IEEE Transactions on Plasma Science, Vol. 35, No. 2, 407-415, 2007.
doi:10.1109/TPS.2007.892676

35. Ghayekhloo, A., A. Abdolali, and S. H. M. Armaki, "Observation of radar cross-section reduction using low-pressure plasma-arrayed coating structure," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3058-3064, 2017.
doi:10.1109/TAP.2017.2690311

36. Yuan, C. X., Z. X. Zhou, J. W. Zhang, X. L. Xiang, Y. Feng, and H. G. Sun, "Properties of propagation of electromagnetic wave in a multilayer radar-absorbing structure with plasma-and radar-absorbing material," IEEE Trans. Plasma Sci., Vol. 39, No. 9, 1768-1775, 2011.
doi:10.1109/TPS.2011.2160285

37. Joozdani, M. Z. and M. K. Amirhosseini, "Wideband absorber with combination of plasma and resistive frequency selective surface," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3254-3261, 2016.
doi:10.1109/TPS.2016.2630725

38. Ghayekhloo, A., M. Afsahi, and A. A. Orouji, "Checkerboard plasma electromagnetic surface for wideband and wide-angle bistatic radar cross section reduction," IEEE Transactions on Plasma Science, Vol. 45, No. 4, 603-609, 2017.
doi:10.1109/TPS.2017.2675282

39. Rahmanzadeh, M., H. Rajabalipanah, and A. Abdolali, "Analytical investigation of ultrabroadband plasma-graphene radar absorbing structures," IEEE Transactions on Plasma Science, Vol. 45, No. 6, 945-954, 2017.
doi:10.1109/TPS.2017.2700724

40. Lieberman, M. A. and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
doi:10.1002/0471724254

41. Singh, H., S. Antony, and R. M. Jha, "Plasma-based radar cross section reduction," Plasma-based radar cross section reduction Radar Cross Section Reduction, 1-46, Springer Singapore, 2016.

42. Costa, F., A. Monorchio, and G. Manara, "An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces," Appl. Comput. Electromagn. Soc. J., Vol. 29, No. 12, 960-976, 2014.

43. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Equivalent circuit model for frequency-selective ," IEEE Transactions on Plasma Science, Vol. 43, No. 10, 3590-3598, 2015.
doi:10.1109/TPS.2015.2468056

44. Yuan, C.-X., et al. "Properties of propagation of electromagnetic wave in a multilayer radar-absorbing structure with plasma-and radar-absorbing material," IEEE Transactions on Plasma Science, Vol. 39, No. 9, 1768-1775, 2011.
doi:10.1109/TPS.2011.2160285

45. Stalder, K. R. and D. J. Eckstrom, "Afterglow decay kinetics of nonuniform plasmas with cylindrical symmetry: Application to the measurement of electron decay in large, photoionized plasmas in atmospheric-pressure helium," Journal of Applied Physics, Vol. 72, No. 9, 3917-3923, 1992.
doi:10.1063/1.352269

46. Akhtar, K., et al. "Characterization of laser produced tetrakis (dimethylamino) ethylene plasma in a high-pressure background gas ," IEEE Transactions on Plasma Science, Vol. 32, No. 2, 813-822, 2004.
doi:10.1109/TPS.2004.826115