Vol. 89
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-05
Acceleration of Very Large Reflectarray Radiation Pattern Computation Using an Adaptive Resolution Spectral Grid
By
Progress In Electromagnetics Research C, Vol. 89, 1-11, 2019
Abstract
In this work, a novel use of the Non-Uniform Fast Fourier Transform (NUFFT) in reflectarray antenna analysis is proposed to greatly accelerate the computation of radiation patterns using a nonuniform, reduced and adaptive grid in the spectral domain. The proposed methodology is very useful for very large reflectarrays, which have very narrow beamwidths due to their large directivity, and shaped-beam reflectarrays for satellite applications such as Direct Broadcast Satellite (DBS), which might require a compliance analysis in very small angular regions. In those cases, high resolution in the radiation pattern is required, while a low resolution could be enough elsewhere to account for side lobes. However, current analysis techniques for such reflectarrays present limitations regarding large memory footprints or slow computations. The methodology presented in this work allows to overcome those limitations by performing computations in a non-uniform, reduced and adaptive grid in the transformed UV domain, achieving faster computations using considerably less memory. Numerical examples for current applications of interest are provided to assess the capabilities of the technique. In particular, the use of the NUFFT allows to compute ef ciently the radiation pattern in any principal plane with improved resolution for multibeam applications. Also, compliance analyses for DBS applications may be improved with the use of a reduced, multiresolution grid and the NUFFT. The proposed technique is thus suitable to greatly accelerate optimization algorithms.
Citation
Daniel Rodríguez Prado, Manuel Arrebola, Marcos R. Pino, Jose Antonio Encinar Garcinuno, and Fernando Las-Heras, "Acceleration of Very Large Reflectarray Radiation Pattern Computation Using an Adaptive Resolution Spectral Grid," Progress In Electromagnetics Research C, Vol. 89, 1-11, 2019.
doi:10.2528/PIERC18101604
References

1. Capozzoli, A., C. Curcio, A. Liseno, and G. Toso, "Phase-only synthesis of at aperiodic reflectarrays," Progress In Electromagnetics Research, Vol. 133, 53-89, 2013.
doi:10.2528/PIER12080109

2. Prado, D. R., M. Arrebola, M. R. Pino, and F. Las-Heras, "Application of the NUFFT to the analysis and synthesis of aperiodic arrays," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), 708-711, Verona, Italy, Sep. 11–15, 2017.

3. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 1994.
doi:10.1109/8.299602

4. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

5. Panduro, M. A., C. A. Brizuela, D. Covarrubias, and C. Lopez, "A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach," Soft Comput., Vol. 10, No. 2, 125-131, Jan. 2006.
doi:10.1007/s00500-004-0434-z

6. Gabrielli, L. H. and H. E. Hernandez-Figueroa, "Aperiodic antenna array for secondary lobe suppression," IEEE Photon. Technol. Lett., Vol. 28, No. 2, 209-212, Jan. 2016.
doi:10.1109/LPT.2015.2492419

7. Suárez, S., G. León, M. Arrebola, L. F. Herrán, and F. Las-Heras, "Experimental validation of linear aperiodic array for grating lobe suppression," Progress In Electromagnetics Research C, Vol. 26, 193-203, 2012.
doi:10.2528/PIERC11110706

8. Panduro, M. A., "Design of non-uniform linear phased arrays using genetic algorithms to provide maximum interference reduction capability in a wireless communication system," J. Chin. Inst. Eng., Vol. 29, No. 7, 1195-1201, 2006.
doi:10.1080/02533839.2006.9671221

9. Li, J., Q. Chen, K. Sawaya, and Q. Yuan, "Amplitude controlled reflectarray using non-uniform FSS reflection plane," IEEE International Symposium on Antennas and Propagation (APSURSI), 2180-2183, Spokane, Washington, USA, Jul. 3–8, 2011.

10. Panduro, M. A., C. A. Brizuela, and D. H. Covarrubias, "Design of electronically steerable linear arrays with evolutionary algorithms," Appl. Soft. Comput., Vol. 8, No. 1, 46-54, Jan. 2008.
doi:10.1016/j.asoc.2006.10.011

11. Martínez-de-Rioja, E., J. A. Encinar, A. Pino, B. González-Valdés, S. V. Hum, and C. Tienda, "Bifocal design procedure for dual reflectarray antennas in offset configurations," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 8, 1421-1425, Aug. 2018.
doi:10.1109/LAWP.2018.2848719

12. Rengarajan, S. R., "Reflectarrays of rectangular microstrip patches for dual-polarization dual-beam radar interferometers," Progress In Electromagnetics Research, Vol. 133, 1-15, 2013.
doi:10.2528/PIER12091615

13. Tienda, C., M. Younis, P. López-Dekker, and P. Laskowski, "Ka-band reflectarray antenna system for SAR applications," The 8th European Conference on Antennas and Propagation (EUCAP), 1603-1606, The Hague, The Netherlands, Apr. 6–11, 2014.

14. Patyuchenko, A., C. Tienda, M. Younis, S. Bertl, P. López-Dekker, and G. Krieger, "Concept of a multi-beam reflectarray digital-beam forming synthetic aperture radar," IEEE International Symposium on Phased Array Systems and Technology, 346-351, Waltham, Massachusetts, USA, Oct. 15–18, 2013.

15. Encinar, J. A., M. Arrebola, L. F. de la Fuente, and G. Toso, "A transmit-receive reflectarray antenna for direct broadcast satellite applications," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3255-3264, Sep. 2011.
doi:10.1109/TAP.2011.2161449

16. Zornoza, J. A. and M. E. Bialkowski, "Australia and New Zealand satellite coverage using a microstrip patch reflectarray," Microw. Opt. Technol. Lett., Vol. 37, No. 5, 321-325, Jun. 2003.
doi:10.1002/mop.10907

17. Legay, H., D. Bresciani, E. Labiole, R. Chiniard, and R. Gillard, "A multi facets composite panel reflectarray antenna for a space contoured beam antenna in Ku band," Progress In Electromagnetics Research B, Vol. 54, 1-26, Aug. 2013.
doi:10.2528/PIERB13061407

18. Cooley, J. W. and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comp., Vol. 19, No. 90, 297-301, Apr. 1965.
doi:10.1090/S0025-5718-1965-0178586-1

19. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons, Hoboken, NJ, USA, 2008.

20. Prado, D. R., M. Arrebola, M. R. Pino, and F. Las-Heras, "An efficient calculation of the far field radiated by non-uniformly sampled planar fields complying Nyquist theorem," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 862-865, Feb. 2015.
doi:10.1109/TAP.2014.2384033

21. Prado, D. R., M. Arrebola, M. R. Pino, F. Las-Heras, and J. A. Encinar, "Efficient computation of the reflectarray far fields in adaptive grids for speed improvement," IEEE International Symposium on Antennas and Propagation (APSURSI), 1181-1182, San Diego, California, USA, Jul. 9–14, 2017.

22. Lee, J.-Y. and L. Greengard, "The type 3 nonuniform FFT and its applications," J. Comput. Phys., Vol. 206, No. 1, 1-5, Jun. 2005.
doi:10.1016/j.jcp.2004.12.004

23. Bucci, O. M. and M. D. Migliore, "A novel Non Uniform Fast Fourier Transform algorithm and its application to aperiodic arrays," IEEE Antennas Wireless Propag. Lett., 1472-1475, 2017.
doi:10.1109/LAWP.2016.2646401

24. Dutt, A., "Fast Fourier transforms for nonequispaced data,", Ph.D. dissertation, Yale University, Aug. 1993.

25. Greengard, L. and J.-Y. Lee, "Accelerating the nonuniform fast fourier transform," SIAM Rev., Vol. 46, No. 3, 443-454, Jul. 2004.
doi:10.1137/S003614450343200X

26. Fessler, J. A. and B. P. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Trans. Signal Process., Vol. 51, No. 2, 560-574, Feb. 2003.
doi:10.1109/TSP.2002.807005

27. Liu, Q. H. and N. Nguyen, "An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s)," IEEE Microw. Guided Wave Lett., Vol. 8, No. 1, 18-20, Jan. 1998.
doi:10.1109/75.650975

28. Dutt, A. and V. Rokhlin, "Fast fourier transforms for nonequispaced data," SIAM J. Sci. Comput., Vol. 14, No. 6, 1368-1393, Nov. 1993.
doi:10.1137/0914081

29. Zornoza, J. A. and J. A. Encinar, "Efficient phase-only synthesis of contoured-beam patterns for very large reflectarrays," Int. J. RF Microw. Comput. Eng., Vol. 14, No. 5, 415-423, Sep. 2004.
doi:10.1002/mmce.20028