Vol. 107

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-17

Mutual Coupling Reduction Between Slotted-T MIMO Elements for UWB Applications

By Kudumu Vara Prasad and Mokkapat Venkata Prasad
Progress In Electromagnetics Research C, Vol. 107, 203-217, 2021
doi:10.2528/PIERC20091103

Abstract

In the present scenario, multiple-input-multiple-output (MIMO) elements provide the capacity to generate more than one radiation pattern with different polarizations, which show a prodigious role in the modern telecommunication sector. A new two-element MIMO antenna with minimization in mutual coupling is presented in this paper. The proposed design reduces mutual coupling between antenna elements. The strip-line mechanism is used as a feed and is simulated using HFSS v 15. MIMO element design is done with four T-shaped slots in all directions of the patch, further enhancing the cross-correlation. MIMO antenna consists of two radiators on a 50 x 25 mm2 FR-4 substrate. A T-shape ground stub, along with a slot, reduces mutual coupling (MC) and Impedance Bandwidth (IBW) of the proposed design. The design provides multi-band characteristics in the entire UWB range with practical applications like WiMAX (3.5 GHz), WLAN (5.9 GHz), X-band SATCOM applications (7.9 GHz) and Radar, Mobile phones, and commercial WLAN (9.3 GHz). The spacing between elements is in the order of 0.215λ0. MC reduction of 20 dB is achieved at every resonant frequency.

Citation


Kudumu Vara Prasad and Mokkapat Venkata Prasad, "Mutual Coupling Reduction Between Slotted-T MIMO Elements for UWB Applications," Progress In Electromagnetics Research C, Vol. 107, 203-217, 2021.
doi:10.2528/PIERC20091103
http://www.jpier.org/PIERC/pier.php?paper=20091103

References


    1. Biswas, A. K. and U. Chakraborty, "Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., e21629, 2018.

    2. Abdullah, M., Q. Li, W. Xue, G. Peng, Y. He, and X. Chen, "Isolation enhancement of MIMO antennas using shorting pins," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 10, 1249-1263, 2019.
    doi:10.1080/09205071.2019.1606738

    3. Babu, K. V. and B. Anuradha, "Design of inverted L-shape & ohm symbol inserted MIMO antenna to reduce the mutual coupling," Int. J. Electron. Commun. (AEU), Vol. 105, 42-53, 2019.
    doi:10.1016/j.aeue.2019.04.002

    4. Xi, L., H. Zhai, and L. Li, "A low-profile antenna system with a compact new structure for reducing mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 1, 71-83, 2018.
    doi:10.1080/09205071.2018.1524796

    5. Babashah, H., H. R. Hassani, and S. Mohammad-Ali-Nezhad, "A compact UWB printed monopole MIMO antenna with mutual coupling reduction," Progress In Electromagnetics Research C, Vol. 91, 55-67, 2019.
    doi:10.2528/PIERC19010905

    6. Liu, Y., X. Yang, Y. Jia, and Y. Jay Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
    doi:10.1109/ACCESS.2019.2939270

    7. El Ouahabi, M., A. Zakriti, M. Essaaidi, A. Dkiouak, and E. Hanae, "A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications," Progress In Electromagnetics Research C, Vol. 93, 93-101, 2019.
    doi:10.2528/PIERC19032601

    8. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and K. Sharma, "A novel compact self-similar fractal UWB MIMO antenna," Int. J. RF Microw. Comput. Aided Eng., e21632, 2018.

    9. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 2019.

    10. Salehi, M. and A. Tavakoli, "A novel low mutual coupling microstrip antenna array design using the defected ground structure," Int. J. Electron. Commun. (AEU), 718-723, 2006.
    doi:10.1016/j.aeue.2005.12.009

    11. Anitha, R., V. P. Sarin, P. Mohanan, and K. Vasudevan, "Enhanced isolation with defected ground structure in MIMO antenna," Electronics Letters, Vol. 50, No. 24, 1784-1786, November 20, 2014.
    doi:10.1049/el.2014.2795

    12. Luo, C.-M., J.-S. Hong, and L.-L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1766-1769, 2015.
    doi:10.1109/LAWP.2015.2423318

    13. Sun, X.-B. and M. Y. Cao, "Low mutual coupling antenna array for WLAN application," Electronics Letters, Vol. 53, No. 6, 368-370, March 16, 2017.
    doi:10.1049/el.2016.4563

    14. Kumar, N. and U. K. Kommuri, "MIMO antenna H-plane isolation enhancement using UC-EBG structure and metal line strip for WLAN applications," Radio Engineering, Vol. 29, No. 2, 399-406, June 2019.

    15. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z. Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microw. Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
    doi:10.1049/iet-map.2010.0154

    16. Ghaloua, A., J. Zbitou, L. El Abdellaoui, M. Latrach, A. Tajmouati, and A. Errkik, "Reduction of mutual coupling between closely spaced microstrip antennas arrays using electromagnetic band-gap (2D-EBG) structures," TELKOMNIKA, Vol. 16, No. 1, 151-158, February 2018, ISSN: 1693-6930.
    doi:10.12928/telkomnika.v16i1.7017

    17. Thakur, E., N. Jaglan, S. D. Gupta, and B. K. Kanaujia, "A compact notched UWB MIMO antenna with enhanced performance," Progress In Electromagnetics Research C, Vol. 91, 39-53, 2019.
    doi:10.2528/PIERC18120202

    18. Dwairi, M. O., M. S. Soliman, A. A. Alahmadi, S. H. A. Almalki, and I. I. M. Abu Sulayman, "Design and performance analysis of fractal regular slotted-patch antennas for ultra-wideband communication systems," Wireless Personal Communications, Vol. 105, 819-833, February 5, 2019.

    19. Biswas, A. K., A. Kundu, A. K. Bhattacharjee, and U. Chakraborty, "Isolator-based mutual coupling reduction of H-shaped patches in MIMO antenna applications," Advances in Computer, Communication and Control, Lecture Notes in Networks and Systems, Vol. 41, 361-366, 2019.
    doi:10.1007/978-981-13-3122-0_34

    20. Ghosh, J., D. Mitra, and S. Das, "Mutual coupling reduction of slot antenna array by controlling surface wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1352-1357, February 2019.
    doi:10.1109/TAP.2018.2883524

    21. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1917-1924, 2015.
    doi:10.1109/TAP.2015.2406892

    22. Choukiker, Y. K., S. K. Sharma, and S. K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1488, March 2014.
    doi:10.1109/TAP.2013.2295213

    23. Lalbakhsh, A., A. A. Lotfi Neyestanak, and M. Naser-Moghaddasi, "Microstrip hairpin bandpass filter using modified minkowski fractal-shape for suppression of second harmonic," IEICE Trans. Electron., Vol. E95-C, No. 3, 378-381, March 2012.
    doi:10.1587/transele.E95.C.378

    24. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3328-3335, May 2020.
    doi:10.1109/TAP.2020.2969888

    25. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1916-1921, March 2019.
    doi:10.1109/TAP.2019.2891232

    26. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicensed frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
    doi:10.1109/TAP.2019.2891232

    27. Papadopoulos, K. A., C. A. Papagianni, P. K. Gkonis, I. S. Venieris, and D. I. Kaklamani, "Particle swarm optimization of antenna arrays with efficiency constraints," Progress In Electromagnetics Research M, Vol. 17, 237-251, 2011.
    doi:10.2528/PIERM11012504

    28. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multi-objective particle swarm optimization to design a time delay equalizer metasurface for an electromagnetic band gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 912-915, 2016.

    29. Jamshidi, M., A. Lalbakhsh, B. Mohamadzade, H. Siahkamari, and S. M. H. Mousavi, "A novel neural-based approach for design of microstrip filters," Int. J. Electron. Commun. (AEU), Vol. 110, 152847, 2019.
    doi:10.1016/j.aeue.2019.152847

    30. Wang, M., T.-H. Loh, Y. Zhao, and Q. Xu, "A closed-form formula of radiation and total efficiency for lossy multiport antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2468-2472, 2019.
    doi:10.1109/LAWP.2019.2940382