Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-26
A Low-Profile Dual-Band Base Station Antenna with Antenna on Antenna Structure
By
Progress In Electromagnetics Research C, Vol. 109, 77-94, 2021
Abstract
A low-profile dual-band composite structure antenna is proposed for fifth generation mobile communication system (5G), which is named as Antenna on Antenna (AOA). Loaded with an artificial magnetic conductor (AMC) reflector, the proposed AOA element consists of a pair of dual-polarized lower band (LB) dipole antennas working in the 0.7-1.03 GHz band and four upper band (UB) patch antenna arrays working in the 24.25-27 GHz band, which covers LTE and 5G millimeter wave band. In order to reduce the size of base station antenna, the millimeter wave patch antenna arrays are parasitic on the LB dipoles. While the radiator of the LB antenna is utilized as the ground of the millimeter wave patch antenna array, LB and UB antennas share the same dielectric substrate. The profile height of the antenna is reduced by AMC reflector effectively. Meanwhile, the three-element AOA array loaded with AMC reflector is designed to validate the overall performance of base station antenna. The operation bands of the proposed AOA are 0.7-1.03 GHz (Snn<-14 dB) and 24.25-27 GHz (Snn<-10 dB) for the LTE and 5G millimeter bands respectively. Antenna prototype was fabricated and measured to verify the design solution. The measured results which are consistent with simulated results show that the AOA has good impedance matching, port isolation, and stable radiation pattern.
Citation
Wei Luo Zhixiong Ni Yuqi Yang Bo Yin Yi Ren Wen Huang , "A Low-Profile Dual-Band Base Station Antenna with Antenna on Antenna Structure," Progress In Electromagnetics Research C, Vol. 109, 77-94, 2021.
doi:10.2528/PIERC20110102
http://www.jpier.org/PIERC/pier.php?paper=20110102
References

1. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

2. Gulur Sadananda, K., M. P. Abegaonkar, and S. K. Koul, "Gain equalized shared-aperture antenna using dual-polarized ZIMfor mmWave 5G base stations," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1100-1104, Jun. 2019.
doi:10.1109/LAWP.2019.2910183

3. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454

4. Zhang, Y. M., et al., "A novel millimeter-wave backward to forward scanning periodic leaky-wave antenna based on two different radiator types," Progress In Electromagnetics Research, Vol. 168, 3138, 2020.

5. Hong, W., "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift," IEEE Microwave Magazine, Vol. 18, No. 7, 86-102, Dec. 2017.
doi:10.1109/MMM.2017.2740538

6. Arya, A. K., et al., "Shark-fin antenna for railway communications in LTE-R, LTE, and lower 5G frequency bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.
doi:10.2528/PIER20040201

7. Feng, B. T., et al., "A dual-wideband double-layer magnetoelectric dipole antenna with a modified horned reflector for 2G/3G/LTE applications," International Journal of Antennas and Propagation, Vol. 2013, 1-9, 2013.
doi:10.1155/2013/509589

8. Yang, L., et al., "A dual-wideband dual-polarized directional magneto-electric dipole antenna," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1128-1133, May 2017.
doi:10.1002/mop.30483

9. Zhang, H., Y. Jiao, and Z. Weng, "A novel dual-wideband directional dipole antenna with double reflecting floors," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1941-1944, 2017.
doi:10.1109/LAWP.2017.2689758

10. Lu, W., G. Liu, K. F. Tong, and H. Zhu, "Dual-band loop-dipole composite unidirectional antenna for broadband wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2860-2866, May 2014.
doi:10.1109/TAP.2014.2307343

11. Wu, R. and Q. Chu, "A compact, dual-polarized multiband array for 2G/3G/4G base stations," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2298-2304, Apr. 2019.
doi:10.1109/TAP.2019.2902652

12. He, Y., Z. Pan, X. Cheng, Y. He, J. Qiao, and M. M. Tentzeris, "A novel dual-band, dual-polarized, miniaturized and low-profile base station antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5399-5408, Dec. 2015.
doi:10.1109/TAP.2015.2481488

13. Lan, J., Z. Yu, J. Zhou, and W. Hong, "An aperture-sharing array for (3.5, 28) GHz terminals with steerable beam in millimeter-wave band," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 4114-4119, May 2020.
doi:10.1109/TAP.2019.2948706

14. Feng, L. Y. and K. W. Leung, "Dual-frequency folded-parallel-plate antenna with large frequency ratio," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 340-345, Jan. 2016.
doi:10.1109/TAP.2015.2500607

15. Lian, R., Z. Wang, Y. Yin, J. Wu, and X. Song, "Design of a low-profile dual-polarized stepped slot antenna array for base station," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 362-365, 2016.
doi:10.1109/LAWP.2015.2446193

16. Ge, L. and K. M. Luk, "A magneto-electric dipole antenna with low-profile and simple structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 140-142, 2013.
doi:10.1109/LAWP.2013.2244054

17. Tang, H., C. Tong, and J. Chen, "Differential dual-polarized filtering dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4298-4302, Aug. 2018.
doi:10.1109/TAP.2018.2836449

18. Liu, Y., S. Wang, X. Wang, and Y. Jia, "A differentially fed dual-polarized slot antenna with high isolation and low profile for base station application," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 303-307, Feb. 2019.
doi:10.1109/LAWP.2018.2889645

19. Alhalabi, R. A. and G. M. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, Oct. 2008.
doi:10.1109/TAP.2008.929506

20. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449

21. Feng, L. Y. and K. W. Leung, "Dual-fed hollow dielectric antenna for dual-frequency operation with large frequency ratio," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3308-3313, Jun. 2017.
doi:10.1109/TAP.2017.2700225

22. Sun, Y. and K. W. Leung, "Substrate-integrated two-port dual-frequency antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3692-3697, Aug. 2016.
doi:10.1109/TAP.2016.2565740

23. Wang, D. and C. H. Chan, "Multiband antenna for WiFi and WiGig communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 309-312, 2016.
doi:10.1109/LAWP.2015.2443013