Vol. 109

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-07

Innovative Microwave Design of Frequency-Independent Passive Phase Shifter with LCL-Network and Bandpass NGD Circuit

By Jamel Nebhen and Blaise Ravelo
Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021
doi:10.2528/PIERC21010201

Abstract

The present paper develops an application of the bandpass (BP) negative group delay (NGD) circuit for the design of an independent frequency phase shifter (PS). The design principle of the innovative PS is constituted by an inductor-capacitor-inductor (LCL) T-shape passive cell in cascade with RLC-network series-based BP NGD circuits. The S-matrix analytical model of the LCL-NGD PS is established in function of the circuit elements. Then, the design equations of the PS elements in the function of the expected PS value and center frequency are formulated. The NGD PS topology is validated with a comparison between the calculated and simulated results of phase, transmission coefficient, and reflection coefficients. As expected, a very good correlation between the analytical model and the simulation is confirmed by the obtained results. It is found that the LCL-NGD PS presents an outstandingly flat phase shift of -120°±5° with 1.2 GHz center frequency. The LCL-NGD PS operates with about 18% relative bandwidth. The PS reflection coefficient presents a magnitude flatness around -3±1.5 dB. Moreover, the reflection coefficient is kept better than -15 dB. The sensitivity of the LCL-NGD PS performances over the NGD circuit element ±5% relative variation is studied. It is found how the PS value and center frequencychange with the R, L, and C components of the NGD circuit.

Citation


Jamel Nebhen and Blaise Ravelo, "Innovative Microwave Design of Frequency-Independent Passive Phase Shifter with LCL-Network and Bandpass NGD Circuit," Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021.
doi:10.2528/PIERC21010201
http://www.jpier.org/PIERC/pier.php?paper=21010201

References


    1. Macke, B. and B. Segard, "Propagation of light-pulses at a negative group-velocity," Eur. Phys. J. D, Vol. 23, 125-141, 2003.
    doi:10.1140/epjd/e2003-00022-0

    2. Munday, J. N. and W. M. Robertson, "Observation of negative group delays within a coaxial photonic crystal using an impulse response method," Optics Communications, Vol. 273, No. 1, 32-36, 2007.
    doi:10.1016/j.optcom.2006.12.039

    3. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 2, 51-53, Feb. 2003.
    doi:10.1109/LMWC.2003.808719

    4. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2619-2625, Oct. 2003.
    doi:10.1109/TAP.2003.817556

    5. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electronics Letters, Vol. 46, No. 17, 1206-1208, Aug. 2010.
    doi:10.1049/el.2010.1797

    6. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
    doi:10.2528/PIER09052801

    7. Mitchell, M. W. and R. Y. Chiao, "Negative group delay and “fronts” in a causal system: An experiment with very low-frequency bandpass amplifiers," Phys. Lett. A, Vol. 230, No. 3–4, 133-138, Jun. 1997.
    doi:10.1016/S0375-9601(97)00244-2

    8. Munday, J. N. and R. H. Henderson, "Superluminal time advance of a complex audio signal," Appl. Phys. Lett., Vol. 85, No. 3, 503-504, Jul. 2004.
    doi:10.1063/1.1773926

    9. Wan, F., J. Wang, B. Ravelo, J. Ge, and B. Li, "Time-domain experimentation of NGD active RC-network cell," IEEE Trans. Circuits and Systems II: Express Briefs, Vol. 66, No. 4, 562-566, Apr. 2019.
    doi:10.1109/TCSII.2018.2870836

    10. Ahn, K.-P., R. Ishikawa, A. Saitou, and K. Honjo, "Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations," IEICE Trans. on Electronics, Vol. E92-C, No. 9, 1176-1181, 2009.
    doi:10.1587/transele.E92.C.1176

    11. Kandic, M. and G. E. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 8, 1727-1735, Aug. 2011.
    doi:10.1109/TCSI.2011.2107251

    12. Zhang, T., R. Xu, and C. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 10, 921-923, Oct. 2017.
    doi:10.1109/LMWC.2017.2745487

    13. Ravelo, B., "Investigation on microwave negative group delay circuit," Electromagnetics, Vol. 31, No. 8, 537-549, Nov. 2011.
    doi:10.1080/02726343.2011.621106

    14. Wu, C.-T. M. and T. Itoh, "Maximally flat negative group delay circuit: A microwave transversal filter approach," IEEE Trans. on Microwave Theory and Techniques, Vol. 62, No. 6, 1330-1342, Jun. 2014.
    doi:10.1109/TMTT.2014.2320220

    15. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electronics Letters, Vol. 53, No. 7, 476-478, Mar. 2017.
    doi:10.1049/el.2017.0328

    16. Chaudhary, G. and Y. Jeong, "Tunable center frequency negative group delay filter using a coupling matrix approach," IEEE Microwave Wireless Component Letters, Vol. 27, No. 1, 37-39, 2017.
    doi:10.1109/LMWC.2016.2629985

    17. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radio Engineering, Vol. 27, No. 4, 1070-1076, Dec. 2018.

    18. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circ. Theor. Appl., Vol. 42, No. 10, 1016-1032, Oct. 2014.
    doi:10.1002/cta.1902

    19. Broomfield, C. D. and J. K. A. Everard, "Broadband negative group delay networks for compensation of oscillators, filters and communication systems," Electron. Lett., Vol. 36, No. 23, 1931-1933, Nov. 2000.
    doi:10.1049/el:20001377

    20. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group delay circuit," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1116-1125, May 2010.
    doi:10.1109/TMTT.2010.2045576

    21. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
    doi:10.2528/PIER10041808

    22. Mirzaei, H. and G. V. Eleftheriades, "Realizing non-Foster reactive elements using negative-group-delay networks," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 12, 4322-4332, Dec. 2013.
    doi:10.1109/TMTT.2013.2281967

    23. Mortazawi, A. and W. Alomar, Negative group delay circuit, United States Patent Application US20160093958, Mar. 2016.

    24. Zhu, M. and C.-T. M. Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," Proc. 2019 49th European Microwave Conference (EuMC), 256-259, Paris, France, Oct. 1–3, 2019.

    25. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," International Journal of Electronics and Communications (AE¨U)/Int. J. Electron. Commun., Vol. 68, No. 4, 282-290, Apr. 2014.
    doi:10.1016/j.aeue.2013.09.003

    26. Ravelo, B., S. Lallechere, A. Thakur, A. Saini, and P. Thakur, "Theory and circuit modelling of baseband and modulated signal delay compensations with low- and band-pass NGD effects," Int. J. Electron. Commun., Vol. 70, No. 9, 1122-1127, Sept. 2016.
    doi:10.1016/j.aeue.2016.05.009

    27. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," Int. J. Electron. Commun., Vol. 123, No. 153297, 1-6, 2020.