Vol. 116
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-10-12
Influence of 3D Printing Process Parameters on the Radiation Characteristics of Dense Dielectric Lens Antennas
By
Progress In Electromagnetics Research C, Vol. 116, 113-128, 2021
Abstract
In recent years, additive manufacturing has found increasing interest in fabrication of dielectric antennas. Using additive manufacturing brings significant advantages such as design flexibility, compactness, fast and low-cost manufacturing compared to traditional fabrication methods. Dielectric antennas having dense material allow high power transfer efficiency through the lens. However, a successful 3D printing process with dense dielectric materials is a great challenge. In this paper, impact of main process parameters during 3D printing; namely printing speed, process temperature and layer height on the resulted relative electrical permittivity values of a dense dielectric material is investigated. Test samples are printed with a dielectric material having εr = 10, and relative permittivity variations of these samples are measured with a vector network analyzer in X-band (8.2-12.4 GHz). In this way, optimum printing parameters are determined. Influence of dielectric constants of printed materials on the antenna radiation characteristics are inspected for an extended hemispherical lens antenna by a full-wave computer-aided design tool. Results demonstrate that an additively manufactured dense dielectric antenna will act as a traditionally manufactured dielectric antenna if and only if it is manufactured with optimum printing parameters.
Citation
Fikret Tokan, Selami Demir, and Alper Çalışkan, "Influence of 3D Printing Process Parameters on the Radiation Characteristics of Dense Dielectric Lens Antennas," Progress In Electromagnetics Research C, Vol. 116, 113-128, 2021.
doi:10.2528/PIERC21080605
References

1. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919

2. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Transactions of Antennas and Propagation, Vol. 56, No. 5, 1251-1258, May 2008.
doi:The server didn't respond in time.

3. Pasqualini, D. and S. Maci, "High-frequency analysis of integrated dielectric lens antennas," IEEE Transactions of Antennas and Propagation, Vol. 52, No. 3, 840-847, Mar. 2004.
doi:

4. Schoenlinner, B., X.Wu, J. P. Ebling, G. V. Eleftheriades, and G. M. Rebeiz, "Wide-scan spherical- lens antennas for automotive radars," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 9, 2166-2175, Sept. 2002.
doi:10.1109/TMTT.2002.802331

5. Ettorre, M., R. Sauleau, L. Le Coq, and F. Bodereau, "Single-folded leaky-wave antennas for automotive radars at 77 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 859-862, Sept. 2010.
doi:10.1109/LAWP.2010.2071850

6. Yang, L., C. W. Domier, and N. C. Luhmann, "band to V-band 1D and 2D elliptical lens antenna arrays," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1798-1801, Aug. 2007.
doi:10.1002/mop.22620

7. Nguyen, N. T., R. Sauleau, and C. J. M. Pérez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Transactions of Antennas and Propagation, Vol. 57, No. 7, 1907-1913, Jul. 2009.
doi:10.1109/TAP.2009.2021884

8. Tokan, F., "Optimization-based matching layer design for broadband dielectric lens antennas," ACES Journal, Vol. 29, No. 6, 499-507, Jun. 2014.

9. Sönmez, N. T. and N. T. Tokan, "Effects of anti reflective coatings on scanning performance of millimetre-wave lenses," IET Microw. Antennas Propag., Vol. 10, No. 14, 1485-1491, Nov. 2016.
doi:10.1049/iet-map.2016.0040

10. Yang, F., X. Wu, J. Zhou, and H. Shao, "Beam-scanning lens antenna based on corrugated parallel-plate waveguides," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1296-1299, Jul. 2018.
doi:10.1109/LAWP.2018.2842742

11. Monkevich, J. M. and G. P. Le Sage, "Design and fabrication of a custom-dielectric Fresnel multi-zone plate lens antenna using additive manufacturing techniques," IEEE Access, Vol. 7, 61452-61460, May 2019.
doi:10.1109/ACCESS.2019.2916077

12. D'Auria, M., et al. "3-D printed metal-pipe rectangular waveguides," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, No. 9, 1339-1349, Sept. 2015.
doi:10.1109/TCPMT.2015.2462130

13. Syed, W. H., D. Cavallo, H. T. Shivamurthy, and A. Neto, "Wideband, wide-scan planar array of connected slots loaded with artificial dielectric superstrates," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 543-553, Feb. 2016.
doi:10.1109/TAP.2015.2507167

14. Neto, A., "UWB, non-dispersive radiation from the planarly fed leaky lens antenna --- Part I: Theory and design," IEEE Transactions of Antennas and Propagation, Vol. 58, No. 7, 2238-2247, Jul. 2010.
doi:10.1109/TAP.2010.2048879

15. Tokan, F., N. T. Tokan, A. Neto, and D. Cavallo, "The lateral wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2909-2916, Jun. 2014.
doi:10.1109/TAP.2014.2310465

16. Patel, P., B. Mukherjee, and J. Mukherjee, "A compact wideband rectangular dielectric resonator antenna using perforations and edge grounding," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 490-493, Nov. 2014.

17. Tokan, F., D. Cavallo, and A. Neto, "A novel planar, broadband, high gain lateral wave antenna array for body scanning applications," Journal of Electrical Engineering, Vol. 71, No. 5, 308-316, Oct. 2020.
doi:10.2478/jee-2020-0042

18. Al-Nuaimi, M. K. T. and W. Hong, "Discrete dielectric reflectarray and lens for E-band with different feed," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 947-950, Mar. 2014.
doi:10.1109/LAWP.2014.2313569

19. Mahouti, P., F. Güneş, M. A. Belen, and A. Çalışkan, "novel design of non-uniform reflectarrays with Symbolic Regression and its realization using 3-D Printer," ACES Journal, Vol. 34, No. 2, Feb. 2019.

20. Bjorgaard, J., M. Hoyack, E. Huber, M. Mirzaee, Y.-H. Chang, and S. Noghanian, "Design and fabrication of antennas using 3D printing," Progress In Electromagnetics Research C, Vol. 84, 119-134, May 2018.
doi:10.2528/PIERC18011013

21. Parsons, P., Z. Larimore, F. Muhammed, and M. Mirotznik, "Fabrication of low dielectric constant composite filaments for use in fused filament fabrication 3D printing," Additive Manufacturing, Vol. 30, 1-10, Jan. 2020.

22. Ghazali, M. I. M., S. Karuppuswami, A. Kaur, and P. Chahal, "3D printed high functional density packaging compatible out-of-plane antennas," Additive Manufacturing, Vol. 30, 1-7, Dec. 201.

23. Zhang, S., "Three-dimensional printed millimetre wave dielectric resonator reflectarray," IET Microw. Antennas Propag., Vol. 11, No. 14, 2005-2009, Oct. 2017.
doi:10.1049/iet-map.2017.0278

24. Zhang, S., R. K. Arya, S. Pandey, Y. Vardaxoglou, W. Whittow, and R. Mittra, "3D-printed planar graded index lenses," IET Microwaves, Antennas & Propagation, Vol. 10, No. 13, 1411-1419, Oct. 2016.
doi:10.1049/iet-map.2016.0013

25. Huang, J., S. J. Chen, Z. Xue, W. Withayachumnankul, and C. Fumeaux, "Wideband endfire 3-D-printed dielectric antenna with designable permittivity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2085-2089, Nov. 2018.
doi:10.1109/LAWP.2018.2857497

26. Goulas, A., et al. "The impact of 3D printing process parameters on the dielectric properties of high permittivity composites," Designs, Vol. 3, No. 50, 1-10, Nov. 2019.

27. Goulas, A., S. Zhang, J. R. McGhee, D. A. Cadman, W. G. Whittow, J. C. Vardaxoglou, and D. S. Engstrøm, "Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices," Materials & Design, Vol. 193, Aug. 202.

28. Trabelsi, S., A. W. Kraszewski, and S. O. Nelson, "Phase-shift ambiguity in microwave dielectric properties measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 1, 56-60, Feb. 2000.
doi:10.1109/19.836309

29. Sheen, J., "Study of microwave dielectric properties measurements by various resonance techniques," Measurement, Vol. 37, No. 2, 123-130, Mar. 2005.
doi:10.1016/j.measurement.2004.11.006

30. Lee, C. K., et al. "Evaluation of microwave characterization methods for additively manufactured materials," Designs, Vol. 47, No. 3, 1-17, Sept. 2019.

31. Fieber, L., S. S. Bukhari, Y. Wu, and P. S. Grant, "In-line measurement of the dielectric permittivity of materials during additive manufacturing and 3D data reconstruction," Additive Manufacturing, Vol. 32, 1-11, Mar. 2020.

32. You, K. Y., "Effects of sample thickness for dielectric measurements using transmission phase-shift method," International Journal of Advances in Microwave Technology (IJAMT), Vol. 1, No. 3, 64-67, Nov. 2016.

33. Petosa, A. and A. Ittipiboon, "Design and performance of a perforated dielectric Fresnel lens," IEE Proceedings --- Microwave Antennas and Propagation, Vol. 150, No. 5, 309-314, Oct. 2003.
doi:10.1049/ip-map:20030267

34. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1785-1794, Dec. 1999.
doi:10.1109/8.817654