Vol. 117
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-02
Performance Analysis and Impedance Modeling of Rectangular and Circular Split-Ring Resonator Antennas in 2.4/5.2 GHz Bands
By
Progress In Electromagnetics Research C, Vol. 117, 159-171, 2021
Abstract
In this paper, impedance modeling is presented for analyzing the metallic loading effect on the performance of a split ring resonator (SRR) antenna in (2.4-2.5)/(5.1-5.8) GHz frequency bands. Two SRR antennas of rectangular and circular rings have been designed on ANSYS HFSS software, and their return losses are obtained as -16.63/-25.26 dB at 2.7/5.8 GHz and -10/-20.09 dB at 2.2/5.2 GHz, respectively. Then the metallic loadings are incorporated in both rectangular and circular SRR antennas, which move the peak resonant frequency to 2.5/5.1 GHz with simulated return losses of -14.39/-22 dB for rectangular SRR antenna and to 2.6/5.1 GHz with -17.64/-11.10 dB, respectively for circular SRR antenna. Then, to analyze the effect of metallic loading on SRR antenna performance, a set of equations are derived from the equivalent circuit of the SRR antenna without and with metallic loading to evaluate the lumped elements values. The circular SRR antenna with metallic loading is fabricated, and its measured return loss is found to be -17.94/-15.76 dB at 2.415/5.23 GHz. The lumped component values are calculated from the measured return loss using the derived equations, and these values are compared with those obtained from the simulated return loss for circular SRR antenna. A shift in resonant frequencies towards the desired bands is observed due to the inductive effect of the metallic loading. The axial ratio values higher than 15 dB confirm that the proposed SRR antennas with metallic loadings are linearly polarised. The 2D patterns in E-plane and H-plane, as well as 3D far-field patterns, confirm an omnidirectional radiation pattern for circular SRR antenna, which is useful for WLAN applications.
Citation
Puneet Sehgal, and Kamlesh Patel, "Performance Analysis and Impedance Modeling of Rectangular and Circular Split-Ring Resonator Antennas in 2.4/5.2 GHz Bands," Progress In Electromagnetics Research C, Vol. 117, 159-171, 2021.
doi:10.2528/PIERC21091305
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

2. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

3. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

4. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 1, 265-271, 2006.
doi:10.1109/TMTT.2005.861664

5. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "High-pass filters implemented by composite right/left handed (CRLH) transmission lines based on complementary split rings resonators (CSRRs)," PIERS Online, Vol. 3, No. 3, 251-253, 2007.
doi:10.2529/PIERS060802072849

6. Martin, F., F. Falcone, J. Bonache, R. Marques, and M. Sorolla, "Miniaturized coplanar waveguide stop band filters based on multiple tuned split-ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 511-513, 2003.
doi:10.1109/LMWC.2003.819964

7. Saadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or ω medium," Microw. Opt. Technol. Lett., Vol. 5, No. 4, 184-188, 1992.
doi:10.1002/mop.4650050412

8. Antoniades, M. A. and G. V. Eleftheriades, "A broadband series power divider using zero-degree metamaterial phase-shifting lines," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 808-810, 2005.
doi:10.1109/LMWC.2005.859007

9. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2626-2640, 2003.
doi:10.1109/TAP.2003.817561

10. Arnedo, I., J. Illescas, M. Flores, T. Lopetegi, M. A. G. Laso, F. Falcone, J. Bonache, J. García- García, F. Martín, J. A. Marcotegui, R. Marqués, and M. Sorolla, "Forward and backward leaky-wave radiation in split-ring-resonator-based metamaterials," IET Microw. Antennas Propag., Vol. 1, No. 1, 65, 2007.
doi:10.1049/iet-map:20050320

11. Duk Jang, K., J. Hee Kim, D. Hyun Lee, and W. S. Park, "Compact resonant antenna based on composite right/left-handed transmission line with a magneto-dielectric material," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1994-1997, 2009.
doi:10.1002/mop.24490

12. Kim, I. K., H.Wang, S. J.Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Trans. Veh. Technol., Vol. 61, No. 4, 1665-1672, 2012.
doi:10.1109/TVT.2012.2189254

13. Yu, Z., S. Mo, and Z. Long, "A novel UWB SRR antenna," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1486-1489, 2011.

14. Cumhur Basaran, S. and Y. E. Erdemli, "A dual-band split-ring monopole antenna for WLAN applications," Microw. Opt. Technol. Lett., Vol. 51, No. 11, 2685-2688, 2009.
doi:10.1002/mop.24708

15. Cumhur Basaran, S., "A compact dual-wideband antenna based on complementary split-ring resonator," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1917-1920, 2012.
doi:10.1002/mop.26969

16. Basaran, S. C. and K. Sertel, "Dual wideband CPW-fed monopole antenna with split-ring resonators," Microw. Opt. Technol. Lett., Vol. 55, No. 9, 2088-2092, 2013.
doi:10.1002/mop.27789

17. Sehgal, P., K. Patel, and , "Dual-wideband CPW-fed monopole antenna with circular split-ring resonators," 7th International Conference on Signal Processing and Integrated Networks (SPIN), 1078-1083, Noida, India, 2020.

18. Saha, C., "On some studies with split ring resonators SRR of different geometrical shapes for metamaterial applications,", Ph.D. Thesis, University of Calcutta, India, 2012.

19. Naqui, J., M. Duran-Sindreu, and F. Martin, "Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects," Antennas Wirel. Propag. Lett., Vol. 12, 178-181, 2013.
doi:10.1109/LAWP.2013.2245095

20. Marwaha, A., "An accurate approach of mathematical modeling of SRR and SR for metamaterials," JESTR, Vol. 9, No. 6, 82-86, 2016.
doi:10.25103/jestr.096.11

21. Sadiku, M. N. O., Elements of Electromagnetics, Oxford University Press, USA, 1995.