Vol. 117

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-21

Design and Analysis of Rectenna at 2.42 GHz for Wi-Fi Energy Harvesting

By Rashmi Pandey, Ashok Kumar Shankhwar, and Ashutosh Singh
Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021
doi:10.2528/PIERC21100409

Abstract

This work proposes a design of rectenna for Wi-Fi energy harvesting application at 2.42 GHz. The proposed antenna includes a modified rectangular patch and two circular radiating elements with partial ground, and adopts a total area of 80 × 80 mm2. With the partial ground structure, the proposed antenna shows a better reflection coefficient (S11) at 2.42 GHz. The proposed antenna is a modified conventional patch antenna that shows its improved suitability for Wi-Fi energy harvesting at the targeted band. For rectenna, an impedance matching circuit based on microstrip transmission lines, radial stubs, and enhanced Greinacher voltage doubler rectifier circuits are designed. The rectifier circuit occupies a total area of 25 × 25 mm2. The antenna part of the rectenna exhibits quite good S11 < -10 dB and 3.94 dB peak gain. To validate the design experimentally, a prototype of the proposed rectenna is also fabricated. The measured result indicates that at the resonant frequency the rectenna achieves the peak efficiency of 78.53%, and the output voltage is 4.7 V at 0 dBm input power.

Citation


Rashmi Pandey, Ashok Kumar Shankhwar, and Ashutosh Singh, "Design and Analysis of Rectenna at 2.42 GHz for Wi-Fi Energy Harvesting," Progress In Electromagnetics Research C, Vol. 117, 89-98, 2021.
doi:10.2528/PIERC21100409
http://www.jpier.org/PIERC/pier.php?paper=21100409

References


    1. Bizon, N., N. M. Tabatabaei, F. Blaabjerg, and E. Kurt, Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications, Springer International Publishing, 2017.
    doi:10.1007/978-3-319-49875-1

    2. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications [Antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, Dec. 2016.
    doi:10.1109/MAP.2016.2609818

    3. Adam, I., M. Fareq Abd Malek, M. Najib Mohd Yasin, and H. A. Rahim, "Double band microwave rectifier for energy harvesting," Microw. Opt. Technol. Lett., Vol. 58, 922-927, 2016.
    doi:10.1002/mop.29709

    4. McSpadden, J. O., L. Fan, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 2053-2060, Dec. 1998.
    doi:10.1109/22.739282

    5. Tu, W., S. Hsu, and K. Chang, "Compact 5.8-GHz rectenna using stepped-impedance dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 282-284, 2007.
    doi:10.1109/LAWP.2007.898555

    6. Suh, Y.-H., C. Wang, and K. Chang, "Circular polarized truncated-corner square patch microstrip rectenna for wireless power transmission," Electron. Lett., Vol. 36, No. 7, 600-602, Mar. 2000.
    doi:10.1049/el:20000527

    7. Yo, T.-C., C.-M. Lee, C.-M. Hsu, and C.-H. Luo, "Compact circularly polarized rectenna with unbalanced circular slots," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 882-886, Mar. 2008.
    doi:10.1109/TAP.2008.916956

    8. Harouni, Z., L. Cirio, L. Osman, A. Gharsallah, S. Member, and O. Picon, "A dual circularly polarized 2.45-GHz rectenna for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 306-309, 2011.
    doi:10.1109/LAWP.2011.2141973

    9. Suh, Y.-H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45 and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, Jul. 2002.
    doi:10.1109/TMTT.2002.800430

    10. Heikkinen, J. and M. Kivikoski, "A novel dual-frequency circularly polarized rectenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 330-333, 2003.
    doi:10.1109/LAWP.2004.824166

    11. Ren, Y.-J., M. F. Farooqui, and K. Chang, "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2110-2113, Jul. 2007.
    doi:10.1109/TAP.2007.900275

    12. Xie, F., G. Yang, and W. Geyi, "Optimal design of an antenna array for energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 155-158, 2013.
    doi:10.1109/LAWP.2013.2243697

    13. Chou, J. H., D. B. Lin, T. W. Hsiao, and H. T. Chou, "A compact shorted patch rectenna design with harmonic rejection properties for the applications of wireless power transmission," Microw. Opt. Technol. Lett., Vol. 58, 2250-2257, 2016.
    doi:10.1002/mop.30012

    14. Chamanian, S., H. Ulusan, A. Koyuncuoglu, A. Muhtaroglu, and H. Kulah, "An adaptable interface circuit with multi-stage energy extraction for low power piezoelectric energy harvesting MEMS," IEEE Trans. Power Electron, Vol. 34, 2739-2747, 2019.
    doi:10.1109/TPEL.2018.2841510

    15. Zhang, J. W., Y. Huang, and P. Cao, "An investigation of wideband rectennas for wireless energy harvesting," Wireless Eng. Technol., Vol. 5, 107-116, 2014.
    doi:10.4236/wet.2014.54012

    16. Almoneef, T. S., F. Erkmen, M. A. Alotaibi, and O. M. Ramahi, "A new approach to microwave rectennas using tightly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1714-1724, Apr. 2018, doi: 10.1109/TAP.2018.2806398.
    doi:10.1109/TAP.2018.2806398

    17. Almoneef, T. S., "Design of a rectenna array without a matching network," IEEE Access, Vol. 8, 109071-109079, 2020, doi: 10.1109/ACCESS.2020.3001903.
    doi:10.1109/ACCESS.2020.3001903

    18. Aldhaeebi, M. A. and T. S. Almoneef, "Highly efficient planar metasurface rectenna," IEEE Access, Vol. 8, 214019-214029, 2020, doi: 10.1109/ACCESS.2020.3041403.
    doi:10.1109/ACCESS.2020.3041403

    19. Bait-Suwailam, M. M., T. S. Almoneef, and S. M. Saeed, "Flexible metamaterial electromagnetic harvester using modified split-ring resonator," Progress In Electromagnetics Research M, Vol. 95, 135-144, 2020.
    doi:10.2528/PIERM20051407

    20. Alaukally, M. N. N., T. A. Elwi, and D. C. Atilla, "Miniaturized flexible metamaterial antenna of circularly polarized high gain-bandwidth product for radio frequency energy harvesting," Int. J. Commun. Syst., Vol. e5024, 2021, doi:10.1002/dac.5024.

    21. Abdulmjeed, A., T. A. Elwi, and S. Kurnaz, "Metamaterial Vivaldi printed circuit antenna based solar panel for self-powered wireless systems," Progress In Electromagnetics Research M, Vol. 102, 181-192, 2021.
    doi:10.2528/PIERM21032406

    22. Hua, M. J., P. Wang, Y. Zheng, and S. L.Yuan, "Compact tri-band CPW-fed antenna for WLAN/WiMAX applications," Electron Lett., Vol. 49, 1118-1119, 2013.
    doi:10.1049/el.2013.1669

    23. Sun, X. L., L. Liu, S. W. Cheung, and T. I. Yuk, "Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 60, 5924-5931, 2012, https://doi.org/10.1109/TAP.2012.2211322.
    doi:10.1109/TAP.2012.2211322

    24. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018, https://doi.org/10.1109/ACCESS.2018.2848907.
    doi:10.1109/ACCESS.2018.2848907

    25. Zhang, L., B. Chen, Y. C. Jiao, and Z. B. Weng, "Compact triple-band monopole antenna with two strips for WLAN/WiMAX applications," Microw. Opt. Technol. Lett., Vol. 54, 2650-2653, 2012.
    doi:10.1002/mop.27154

    26. Kang, L., H. Wang, X. H. Wang, and X. Shi, "Compact ACS-fed monopole antenna with rectangular SRRs for tri-band operation," Electron. Lett., Vol. 50, 1112-1114, 2014, https://doi.org/10.1049/el.2014.1771.
    doi:10.1049/el.2014.1771

    27. Chen, L., Y.-F. Liu, and X.-L. Ma, "Compact ACS-fed circular-arc-shaped stepped monopole antenna for tri-band WLAN/WIMAX applications," Progress In Electromagnetics Research C, Vol. 51, 131-137, 2014.
    doi:10.2528/PIERC14051206

    28. Kumar, A., P. Naidu, V. Kumar, and A. K. Ramasamy, "Design & development of compact uniplanar semi-hexagonal ACS-fed multi-band antenna for portable system application," Progress In Electromagnetics Research M, Vol. 60, 157-167, 2017.
    doi:10.2528/PIERM17080302

    29. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "A quad-band antenna for multi-band radio frequency energy harvesting circuit," AEU --- International Journal of Electronics and Communications, Vol. 85, 99-107, 2018, ISSN 1434-8411.
    doi:10.1016/j.aeue.2017.12.035

    30. Tafekirt, H., J. Pelegri-Sebastia, A. Bouajaj, and B. M. Reda, "A sensitive triple-band rectifier for energy harvesting applications," IEEE Access, Vol. 8, 73659-73664, 2020, doi: 10.1109/ACCESS.2020.2986797.
    doi:10.1109/ACCESS.2020.2986797

    31. Mansour, M. M. and H. Kanaya, "Efficiency-enhancement of 2.45-GHz energy harvesting circuit using integrated CPW-MS structure at low RF input power," IEICE Transactions on Electronics, Vol. E102C, No. 5, 399-407, 2019.
    doi:10.1587/transele.2018ECP5065

    32. Chuma, E. L., L. D. L. T. Rodrguez, Y. Iano, L. L. B. Roger, and M. Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microw., Antennas Propag, Vol. 12, No. 2, 173-178, Feb. 2018, doi: 10.1049/ietmap.2016.1150.
    doi:10.1049/iet-map.2016.1150

    33. Koohestani, M., J. Tissier, and M. Latrach, "A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz," AEU --- International Journal of Electronics and Communications, Vol. 127, 153478, 2020, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2020.153478.
    doi:10.1016/j.aeue.2020.153478

    34. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018, doi: 10.1109/ACCESS.2018.2848907.
    doi:10.1109/ACCESS.2018.2848907

    35. Divakaran, S., D. Krishna, Nasimuddin, and J. K. Antony, "Dual-band multi-port rectenna for RF energy harvesting," Progress In Electromagnetics Research C, Vol. 107, 17-31, 2021.
    doi:10.2528/PIERC20100802

    36. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., 86, Wiley, New York, 1997.