Vol. 119
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-02-28
Redefining of the Radar Cross Section and the Antenna Gain to Make Them Suitable for Surface Wave Propagation
By
Progress In Electromagnetics Research C, Vol. 119, 1-16, 2022
Abstract
This paper deals with a new definition of the Radar Cross Section (RCS) suitable for surface wave propagation in the HF band. Indeed, it can be shown that the classical definition of the RCS is dependent on distance for this kind of propagation. Also, in simulation, with the classical definition, the power estimated on the receivers using the radar equation is inaccurate. This is an issue for the performance assessment of High Frequency Surface Wave Radars. Thanks to the analysis of different wave propagation models, the differences between the space wave propagation and surface wave propagation have been highlighted. The required modifications of the RCS can then be performed. The proposed new definition is explained and justified in the paper and has been successfully applied to the computation of the RCS of naval targets. In addition, the implementation of this normalization term into the radar equation, and conversely the gain, is discussed. It can be observed that the received power, determined with the definitions adjusted to the surface wave propagation, is accurate. The different obtained results are illustrated and commented.
Citation
Quentin Herbette Muriel Darces Nicolas Bourey Stéphane Saillant Florent Jangal Marc Hélier , "Redefining of the Radar Cross Section and the Antenna Gain to Make Them Suitable for Surface Wave Propagation," Progress In Electromagnetics Research C, Vol. 119, 1-16, 2022.
doi:10.2528/PIERC21111204
http://www.jpier.org/PIERC/pier.php?paper=21111204
References

1. Jangal, F. and M. Menelle, "French HFSWR contribution to the European integrated maritime surveillance system I2C," IET International Radar Conference, Vol. 2015, 1-5, October 2015.

2. Bourey, N., F. Jangal, M. Darces, and M. Helier, "Enhancing field strength in HF propagation by using a transition between a metamaterial and the sea," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2680-2684, April 2013.

3. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, IET Digital Library, January 2004.
doi:10.1049/SBRA026E

4. Bannister, P. R., New formulas that extend Norton's farfield elementary dipole equations to the quasi-nearfield range, Technical Report NUSC-TR-6883, NAVAL UNDERWATER SYSTEMS CENTER NEW LONDON CT, January 1984.

5. Ratcliffe, J. A., "Scientists' reactions to Marconi's transatlantic radio experiment," Proceedings of the Institution of Electrical Engineers, Vol. 121, No. 9, 1033-1039, September 1974.
doi:10.1049/piee.1974.0242

6. Zenneck, J., "Uber die Fortp anzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie," Annalen der Physik, Vol. 328, No. 10, 846-866, 1907.
doi:10.1002/andp.19073281003

7. Sommerfeld, A., "Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie," Annalen der Physik, Vol. 333, No. 4, 665-736, 1909.
doi:10.1002/andp.19093330402

8. Norton, K. A., "The propagation of radio waves over the surface of the Earth and in the upper atmosphere," Proceedings of the Institute of Radio Engineers, Vol. 25, No. 9, 1203-1236, September 1937.

9. Rotheram, S., "Ground-wave propagation. Part 2: Theory for medium and long distances and reference propagation curves," IEE Proceedings F --- Communications, Radar and Signal Processing, Vol. 128, No. 5, 285-295, October 1981.
doi:10.1049/ip-f-1.1981.0047

10. Apaydin, G. and L. Sevgi, Radio Wave Propagation and Parabolic Equation Modeling, Wiley, October 2017, ISBN: 978-1-119-43211-1.

11. Houdzoumis, V. A., "Two modes of wave propagation manifested in vertical electric dipole radiation over a sphere," Radio Science, Vol. 35, No. 1, 19-29, January 2000.
doi:10.1029/1999RS002207

12. Bremmer, H., "Applications of operational calculus to ground-wave propagation, particularly for long waves," IRE Transactions on Antennas and Propagation, Vol. 6, No. 3, 267-272, July 1958.
doi:10.1109/TAP.1958.1144589

13. Bellec, M., S. Palud, P. Y. Jezequel, S. Avrillon, F. Colombel, and Ph. Pouliguen, "Measurements of surface waves radiated by a vertically polarized antenna over planar seawater at 5 MHz comparison to planar Earth models," 2014 IEEE Radar Conference, 0245-0250, May 2014, ISSN: 2375-5318.
doi:10.1109/RADAR.2014.6875592

14. Bellec, M., P. Y. Jezequel, S. Palud, F. Colombel, S. Avrillon, and P. Pouliguen, "Measurements process of vertically polarized electromagnetic surface-waves over a calm sea in the HF band over a spherical earth," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, April 2015, ISSN: 2164-3342.

15. Leontovich, M. A. and V. A. Fock, "Solution of propagation of electromagnetic waves along the Earth's surface by the method of parabolic equations," Journal of Physics, Vol. 10, 13-23, 1946.

16. Tappert, F. D., "The parabolic approximation method," Lecture Notes in Physics, 224-287, J. B. Keller and J. S. Papadakis, eds., Wave Propagation and Underwater Acoustics, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977.

17. Barrick, D. E., "Theory of HF and VHF propagation across the Rough Sea, 1, the effective surface impedance for a slightly rough highly conducting medium at grazing incidence," Radio Science, Vol. 6, No. 5, 517-526, , eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/RS006i005p0051.
doi:10.1029/RS006i005p00517

18. Podilchak, S. K., H. Leong, R. Solomon, and Y. M. M. Antar, "Radar cross-section modeling of marine vessels in practical oceanic environments for high-frequency surface-wave radar," 2009 IEEE Radar Conference, 1-6, May 2009, ISSN: 2375-5318.

19. Fabbro, V., P. Combes, and N. Guillet, "Apparent radar cross section of a large target illuminated by a surface wave above the sea," Progress In Electromagnetics Research, Vol. 50, 41-60, 2005.
doi:10.2528/PIER04050502