Vol. 121
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-07-26
Raindrop Size Distribution and Rainfall Attenuation Modeling from Disdrometer Measurement in Central Africa: Case of Cameroon
By
Progress In Electromagnetics Research C, Vol. 121, 243-253, 2022
Abstract
Raindrop sizes were measured in Douala, Cameroon (4˚03N, 9˚42'E) using a Parsivel disdrometer. The data obtained are used for the analysis of the drop size distribution (DSD) and specific rain attenuation modeling in the 5-150 GHz frequency range. The Lognormal and gamma distribution models are employed using the method of moments estimation, considering the third, fourth, and sixth-order moments. The parameter fits for the two DSD models proposed here for different values of rain rates are investigated. The specific rainfall attenuation using the Douala DSD models is compared to the ITU-R models in vertical and horizontal polarisation and models for some countries with different climates such as semi-arid, tropical, and subtropical ones in Africa. The comparison with the ITU-R model shows significant differences occurring at high frequency with both high and low rainfall rates. The comparison with other regions of Africa also shows that Douala is characterized by equatorial climate, and Durban characterized by subtropical climate shows similar rainfall attenuation characteristics at operating frequency range 10 ≤ f ≤ 150 GHz, especially at a lower rain rate. At a higher rain rate, specific rain attenuation at Douala is always higher than in other African locations. The proposed models are very important for the determination of rainfall attenuation for terrestrial and satellite systems.
Citation
Patrick Herve Ntanguen, Armand Nzeukou Takougang, and Alain Tchakountio Sandjon, "Raindrop Size Distribution and Rainfall Attenuation Modeling from Disdrometer Measurement in Central Africa: Case of Cameroon," Progress In Electromagnetics Research C, Vol. 121, 243-253, 2022.
doi:10.2528/PIERC22052507
References

1. Tridon, F., A. Battaglia, and S. Kneifel, "How to estimate total differential attenuation due to hydrometeors with ground-based multi-frequency radars,", 2020.

2. Busari, H. O. and O. A. Fakolujo, "Estimation of attenuation due to rain within Ka and Ku bands in Oyo State of Nigeria," FUOYE Journal of Engineering and Technology, Vol. 60, No. 1, 2021.
doi:10.1109/LGRS.2019.2893906

3. Hong, E. S., S. Lane, D. Murrell, N. Tarasenko, C. Christodoulou, and J. Keeley, "Estimating rain attenuation at 72 and 84 GHz from raindrop size distribution measurements in Albuquerque, NM, USA," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 8, 1175-1179, 2019.
doi:10.3390/atmos11060670

4. Liao, L., R. Meneghini, T. Iguchi, and A. Tokay, "Characteristics of DSD bulk parameters: Implication for radar rain retrieval," Atmosphere, Vol. 11, No. 6, 670, 2020.

5. Tan, Y. H., K. Saito, J. I. Takada, M. R. Islam, and A. R. Tharek, "Rain attenuation prediction based on theoretical method with realistic drop shape for millimeter-wave radio in tropical region," IEICE Communications Express, 2021.
doi:10.23919/SAIEE.2020.9007882

6. Sumbiri, D. and T. J. Afullo, "Optimized rain drop size distribution model for microwave propagation for equatorial Africa," SAIEE Africa Research Journal, Vol. 111, No. 1, 22-35, 2020.
doi:10.2528/PIERB08021201

7. Ojo, J., M. Ajewole, and S. Sarkar, "Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over Nigeri," Progress In Electromagnetics Research B, Vol. 5, 207-223, 2008.
doi:10.1016/j.atmosres.2006.05.003

8. Ochou, A. D., A. Nzeukou, and H. Sauvageot, "Parametrization of drop size distribution with rain rate," Atmospheric Research, Vol. 84, No. 1, 58-66, 2007.

9. Alonge, A. A. and T. J. Afullo, "Rainfall microstructures for microwave and millimeter wave link budget at tropical and subtropical sites," 2013 Africon., 1-5, IEEE, 2013.
doi:10.9790/3021-04720109

10. Adetan, O., "Preliminary investigation of raindrop size distribution modelling for microwave applications in Rwanda," IOSR Journal of Engineering, Vol. 4, No. 7, 01-09, 2013.
doi:10.1029/RS020i002p00193

11. Ajayi, G. O. and R. L. Olsen, "Modeling of a tropical raindrop size distribution for microwave and millimeter wave applications," Radio Science, Vol. 20, No. 02, 193-202, 1985.
doi:10.1175/2009JTECHA1332.1

12. Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, "PARSIVEL snow observations: A critical assessment," Journal of Atmospheric and Oceanic Technology, Vol. 27, No. 2, 333-344, 2010.
doi:10.5194/essd-10-941-2018

13. Gires, A., I. Tchiguirinskaia, and D. Schertzer, "Two months of disdrometer data in the Paris area," Earth System Science Data, Vol. 10, No. 2, 941-950, 2018.
doi:10.1175/JTECH-D-13-00174.1

14. Tokay, A., D. B. Wolff, and W. A. Petersen, "Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2," Journal of Atmospheric and Oceanic Technology, Vol. 31, No. 6, 1276-1288, 2014.
doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2

15. Kruger, A. and W. F. Krajewski, "Two-dimensional video disdrometer: A description," Journal of Atmospheric and Oceanic Technology, Vol. 19, No. 5, 602-617, 2002.
doi:10.1175/JTECH1767.1

16. Thurai, M. and V. N. Bringi, "Drop axis ratios from a 2D video disdrometer," Journal of Atmospheric and Oceanic Technology, Vol. 22, 966-978, 2005.
doi:10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2

17. Beard, K. V., "Terminal velocity adjustment for cloud and precipitation drops aloft," Journal of Atmospheric Sciences, Vol. 34, No. 8, 1293-1298, 1977.
doi:10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2

18. Feingold, G. and Z. Levin, "The lognormal fit to raindrop spectra from frontal convective clouds in Israel," Journal of Climate and Applied Meteorology, Vol. 25, No. 10, 1346-1363, 1986.
doi:10.1175/1520-0469(1995)052<1070:TSOADS>2.0.CO;2

19. Sauvageot, H. and J. P. Lacaux, "The shape of averaged drop size distributions," Journal of Atmospheric Sciences, Vol. 52, No. 8, 1070-1083, 1995.
doi:10.1029/2008GL035755

20. Moumouni, S., M. Gosset, and E. Houngninou, "Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers," Geophysical Research Letters, Vol. 35, No. 23, 2008.
doi:10.1016/j.asr.2020.09.017

21. Alonge, A. A., "Semi-empirical characteristics of modified lognormal DSD inputs using rain rate distributions for radio links over the African continent," Advances in Space Research, Vol. 67, No. 1, 179-197, 2021.

22. Yakubu, M. L., Z. Yusop, and F. Yusof, "The modelled raindrop size distribution of Skudai, Peninsular Malaysia, using exponential and lognormal distributions," The Scientific World Journal, Vol. 2014, 2014.
doi:10.1175/2007JAMC1649.1

23. Ulbrich, C. W. and D. Atlas, "Microphysics of raindrop size spectra: Tropical continental and maritime storms," Journal of Applied Meteorology and Climatology, Vol. 46, No. 11, 1777-1791, 2007.
doi:10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2

24. Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, "The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information?," Journal of Atmospheric and Oceanic Technology, Vol. 20, No. 8, 1106-1119, 2003.
doi:10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2

25. Kozu, T. and K. Nakamura, "Rainfall parameter estimation from dualradar measurements combining reflectivity profile and path-integrated attenuation," J. Atmos. Ocean. Technol., Vol. 8, 259-270, 1991.
doi:10.2528/PIERB11082005

26. Afullo, T. J. O., "Raindrop size distribution modeling for radio link design along the eastern coast of South Africa," Progress In Electromagnetics Research B, Vol. 34, 345-366, 2011.
doi:10.1109/ACCESS.2018.2810855

27. Shayea, I., T. A. Rahman, M. H. Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, IEEE, 2018.
doi:10.1109/TAP.2009.2015812

28. Marzuki, M., T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1191-1196, 2009.

29. Lam, H. Y., J. Din, L. Luini, A. D. Panagopoulos, and C. Capsoni, "Analysis of raindrop size distribution characteristics in Malaysia for rain attenuation prediction," IEEE 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, 2011.
doi:10.1109/LAWP.2004.833979

30. Maitra, A., "Rain attenuation modeling from measurements of rain drop size distribution in the Indian region," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 180-181, 2004.
doi:10.1007/BF01008897

31. Liebe, H. J., G. A. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," Internat. J. Infrared and mm Waves, Vol. 12, No. 7, 659-675, 1991.
doi:10.2528/PIERB10072707

32. Das, S. and A. Maitra, "Rain attenuation modeling in the 10-100 GHz frequency using drop size distributions for different climatic zones in tropical India," Progress In Electromagnetics Research B, Vol. 25, 211-224, 2010.
doi:10.1109/TAP.1978.1141845

33. Olsen, R. L., D. V. Rogers, and D. B. Hodge, "The aRb relation in the calculation of rain attenuation," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 2, 547-556, 1978.
doi:10.1007/s12243-013-0418-z

34. Adetan, O. and T. J. Afullo, "Raindrop size distribution and rainfall attenuation modeling in equatorial and subtropical Africa: The critical diameters," Annals of Telecommunications-Annales des Telecommunications, Vol. 69, No. 11, 607-619, 2014.
doi:10.1007/s00024-019-02370-6

35. Mehta, S., S. Singh, A. Mitra, S. K. Ghosh, S. Raha, and S. K. Mehta, "Modeling of raindrop size distribution observed using micro rain radar over Darjeeling (27.05N, 88.26E): An Eastern Himalayan Region," Pure and Applied Geophysics, Vol. 177, No. 6, 2959-2976, 2020.

36. Coko, D. and I. Marinovic, "Experimental verification of a deterministic UWB channel model for single room propagation scenarios," International Journal on Communications Antenna and Propagation, Vol. 4, No. 2, 37-43, 2014.

37. ITU-R, Rec. 838-3, "Specific attenuation model for rain for use in prediction methods,", Intern. Telecom. Union, Geneva, 2005.

38. Crane, R. K., Electromagnetic Wave Propagation through Rain, 1st Edition, University of Oklahoma, 1996.
doi:10.1007/978-94-011-7027-7

39. Ippolito, L. J., Radio Wave Propagation in Satellite Communications, 1st Edition, Van Nostrand Reinhold Company, New York, 1986.