Vol. 29
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-12
Low Loss Circular Birefringence in Artificial Triple Helices
By
Progress In Electromagnetics Research M, Vol. 29, 267-278, 2013
Abstract
Low loss circular birefringence is found in three-dimensional artificial triple helices. High values of chirality index are generated. Within the transmission bandwidth, there is a significant difference in the refractive index value of the right- and left- polarized waves. The outgoing waves from a wedge structure designed from these triple helices are proved to split with a wide angle. The wave polarizations agree with earlier simulation results.
Citation
Amornthep Sonsilphong Nantakan Wongkasem , "Low Loss Circular Birefringence in Artificial Triple Helices," Progress In Electromagnetics Research M, Vol. 29, 267-278, 2013.
doi:10.2528/PIERM13012510
http://www.jpier.org/PIERM/pier.php?paper=13012510
References

1. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, Lecture Note in Physics: Time-harmonic Electromagnetic Fields in Chiral Media, Springer, Heidelberg, Berlin, 1989.

2. Xia, Y., Y. Zhoua, and Z. Tang, "Chiral inorganic nanoparticles: Origin, optical properties and bioapplications," Nanoscale, Vol. 3, 1374-1382, 2011.
doi:10.1039/c0nr00903b

3. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House Publishers, , Boston, MA, 1994.

4. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," J. Opt., Vol. 12, 035101, 2010.
doi:10.1088/2040-8978/12/3/035101

5. Sonsilphong, A. and N. Wongkasem, "Novel technique for high refractive index manifestation," International Conference on Electromagnetics in Advanced Applications, 536-539, 2011.

6. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

7. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513, 2009.
doi:10.1126/science.1177031

8. Gansel, J. K., M. Wegener, S. Burger, and S. Linden, "Gold helix photonic metamaterials: A numerical parameter study," Optics Express, Vol. 18, 1059, 2010.
doi:10.1364/OE.18.001059

9. Yang, Z. Y., M. Zhao, P. X. Lu, and Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Optics Letters, Vol. 35, 2588-2590, 2010.
doi:10.1364/OL.35.002588

10. Yang, Z. Y., M. Zhao, and P. X. Lu, "How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?," Optics Express, Vol. 19, 4255-4260, 2011.
doi:10.1364/OE.19.004255

11. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Optics Express, Vol. 20, 16050-16058, 2012.
doi:10.1364/OE.20.016050

12. Ma, X., C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901, 2012.
doi:10.1063/1.4756901

13. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization independent chiral metamaterials absorbers," Phys. Rev. B., Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108

14. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407

15. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104(R), 2009.

16. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four `U' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901, 2010.
doi:10.1063/1.3457448

17. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, 035105, 2011.
doi:10.1103/PhysRevB.83.035105

18. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, 151112, 2009.
doi:10.1063/1.3120565

19. Wongkasem, N., C. Kamtongdee, A. Akyurtlu, and K. Marx, "Artificial multiple helices: EM and polarization properties," J. Opt., Vol. 12, 075102, 2010.
doi:10.1088/2040-8978/12/7/075102

20. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," J. Opt., Vol. 14, 105103, 2012.
doi:10.1088/2040-8978/14/10/105103

21. Raos, G., "Degrees of chirality in helical structures," Macromol. Theory Simul., Vol. 11, 739-750, 2002.
doi:10.1002/1521-3919(20020901)11:7<739::AID-MATS739>3.0.CO;2-I

22. Green, M. M., N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson, "A helical polymer with a cooperative response to chiral information," Science, Vol. 268, 1860-1866, 1995.
doi:10.1126/science.268.5219.1860

23. Sonsilphong, A. and N. Wongkasem, "Transmission properties in chiral metamaterials," International Journal of Physical Sciences, Vol. 7, No. 21, 2829-2837, 2012.

24. CST Microwave Studio, , http://www.cst.com/.

25. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003, 2009.
doi:10.1088/1464-4258/11/11/114003

26. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multi-octave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas and Wireless Propagat. Letters, Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509

27. Balanis, C. A., Advanced Engineering Electromagnetic, John Wiley & Sons, 1989.

28. Orfanidis, S. J., "Electromagnetic waves and antennas,", Online URL: http://www.ece.rutgers.edu/»orfanidi/ewa/.

29., "IEEE standard definitions of terms for antennas,", IEEE Std 145-1983, Revised IEEE Std 145-1993, 1993.