Vol. 59
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-04
Electromagnetic Scattering from 1-d Sea Surface with Large Windspeed by Using Iterative Physical Optics Algorithm
By
Progress In Electromagnetics Research M, Vol. 59, 55-64, 2017
Abstract
In the paper, the electromagnetic scattering (EM) from a one-dimensional (1-D) perfectly electric conducting (PEC) randomly rough sea surface with large windspeed is investigated by the iterative physical optics (IPO) algorithm. In this method the multiple coupling interactions among points on sea surface are considered. To improve computational efficiency, the local coupling technique is adopted to accelerate the iterative process. In numerical results, the EM scattering by 1-D sea surface for different polarizations is calculated and compared with that by the conventional method of moments (MOM), as well as the computing time and memory requirements. In addition, the influence of some parameters on the scattering of sea surface are investigated and discussed in detail, such as the threshold of coupling distance, iteration numbers, and windspeed.
Citation
Juan Li, Ke Li, and Li-Xin Guo, "Electromagnetic Scattering from 1-d Sea Surface with Large Windspeed by Using Iterative Physical Optics Algorithm," Progress In Electromagnetics Research M, Vol. 59, 55-64, 2017.
doi:10.2528/PIERM17052504
References

1. Dusséaux, R., S. Afifi, and R. D. Oliveira, "On the stationarity of signal scattering by two-dimensional slightly rough random surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5828-5832, 2013.
doi:10.1109/TAP.2013.2276887

2. Iodice, A., A. Natale, and D. Riccio, "Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2156-2163, 2013.
doi:10.1109/TAP.2012.2236531

3. Tabatabaeenejad, A., X. Y. Duan, and M. Moghaddam, "Coherent scattering of electromagnetic waves from two-layer rough surfaces within the Kirchhoff regime," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 7, 3943-3953, 2013.
doi:10.1109/TGRS.2012.2229391

4. Wei, P. B., M. Zhang, R. Q. Sun, and X. F. Yuan, "Scattering studies for two-dimensional exponential correlation textured rough surfaces using small-slope approximation method," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 9, 5364-5373, 2014.
doi:10.1109/TGRS.2013.2288278

5. Ding, K. H., L. Tsang, and J. A. Kong, Scattering of Electromagnetic Wave: Numerical Simulations, Wiley-Inter-science, New York, NY, USA, 2001.
doi:10.1002/0471224308

6. Li, J., L. X. Guo, H. Zeng, and X. B. Han, "Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary," J. Opt. Soc. Am. A, Vol. 26, No. 6, 1494-1502, 2009.
doi:10.1364/JOSAA.26.001494

7. Khankhoje, U. K., J. J. Vanzyl, and T. A. Cwik, "Computation of radar scattering from heterogeneous rough soil using the finite-element method," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 6, 3461-3469, 2013.
doi:10.1109/TGRS.2012.2225431

8. Basteiro, F. O., J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propag., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032

9. Burkholder, R. J. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317

10. Ye, H. X. and Y. Q. Jin, "Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1234-1237, 2005.
doi:10.1109/TAP.2004.842586

11. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Amer., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

12. Hu, J., Z. P. Nie, L. Lei, and Y. P. Chen, "Solving 3D electromagnetic scattering and radiation by local multilevel fast multipole algorithm," IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, 619-622, 2005.

13. Guo, L. X., A. Q. Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002