Vol. 60
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-28
Oblique Incidence and Polarization Insensitive Multiband Metamaterial Absorber with Quad Paired Concentric Continuous Ring Resonators
By
Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017
Abstract
Simulation and experimental measurement of a new design of an oblique incidence and polarization insensitive metamaterial absorber with multiband absorption is presented in this paper. The unit cell of the proposed metamaterial absorber comprises concentric continuous rings of different radii and widths placed in four different quadrants with identical pair of rings placed diagonally opposite, with each ring responsible for high absorption. The calculated dispersion behavior of MM absorber in terms of effective permittivity (εeff), effective permeability (μeff), and refractive index (ηeff) shows the metamaterial characteristics. The surface current and field distributions in MM absorber are simulated to understand the occurrence of absorption bands. The measured results show the absorption peaks of 99.5%, 99.8%, 99.5% and 99.9% at 7.20 GHz, 9.3 GHz, 12.61 GHz, and 13.07 GHz, respectively. The simulated results are well supported by the experimentally measured performance of the fabricated metamaterial absorber. It offers multiband absorption with bands lying in C-band, X-band and Ku-band for mobile communication, satellite communication and radar applications. With merged third and fourth absorption peaks, the proposed metamaterial absorber structure exhibits a broadband absorption.
Citation
Alkesh Agrawal, Mukul Misra, and Ashutosh Singh, "Oblique Incidence and Polarization Insensitive Multiband Metamaterial Absorber with Quad Paired Concentric Continuous Ring Resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
doi:10.2528/PIERM17061302
References

1. Kshetrimayum, R. S., "A brief intro to metamaterials," IEEE Potentials, Vol. 23, No. 5, 44-46, 2004.
doi:10.1109/MP.2005.1368916

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

3. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

5. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

6. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

7. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

8. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

9. Sanada, A., C. Caloz, and T. Itoh, "Characterization of the composite right/left handed transmission lines," IEEE Microwave Wireless Components Letters, Vol. 14, 280-282, 2004.

10. Nefedov, I. S. and S. A. Tretyakov, "On poltential applications of metamaterials for the design of broadband phase shifters," Microwave Optical Technology Letters, Vol. 45, 98-103, 2005.
doi:10.1002/mop.20735

11. Ziolkowski, R. W., "Metamaterial-based efficient magnetically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2006.
doi:10.1109/TAP.2006.877179

12. Caloz, C., S. Abielmona, H. V. Nguyen, and A. Rennings, "Dual composite right-/left-handed (D-CRLH) leaky-wave antenna with low beam squinting and tunable group velocity," Phys. Stat. Solidi (b), Vol. 244, 1219-1226, 2007.
doi:10.1002/pssb.200674510

13. Alu, A., F. Billoti, N. Engheta, and L. Vegni, "Sub-wavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions Antenna Propagation, Vol. 3, 882-891, 2007.
doi:10.1109/TAP.2007.891844

14. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

15. Bhattacharyya, S. and K. V. Srivastava, "An ultra thin magnetic field driven LC resonator structure as metamaterial absorber for dual band applications," Proceedings International Symposium on Electromagnetic Theory, 722-725, 2013.

16. Bhattacharyya, S., H. Baradiya, and K. V. Srivastava, "An ultra thin metamaterial absorber using magnetic field driven LC resonator with meander lines," IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, 1-2, Chicago, USA, Jul. 8-13, 2012.

17. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, 094514, 2013.
doi:10.1063/1.4820569

18. Wang, B. X., L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photonics Technology Letters, Vol. 26, No. 2, 111-114, Jan. 15, 2014.
doi:10.1109/LPT.2013.2289299

19. Ayop, O., M. K. A. Rahim, and N. A. Samsuri, "Dual band polarization insensitive and wide angle circular ring metamaterial absorber," 8th European Conference on Antennas and Propagation (EuCAP), 955-957, 2014.
doi:10.1109/EuCAP.2014.6901921

20. Agarwal, M., A. K. Behera, and M. K. Meshram, "Wide-angle quad-band polarization insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, 2016.
doi:10.1049/el.2015.4134

21. Che Seman, F. and R. Cahill, "Frequency selective surfaces based planar microwave absorbers," PIERS Proceedings, 906-909, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

22. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401

23. Li, M. H., H. L. Yang, and X. W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

24. Chettiar, U. K., A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: Double negative at 813nm and single negative at 772 nm," Optical Letters, Vol. 32, 1617, 2007.

25. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-starstrip configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13061105

26. Dincer, F., M. Karaaslan, E. Unal, O. Akgol, E. Demirel, and C. Sabah, "Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 6, 741-751, 2014.
doi:10.1080/09205071.2014.888322

27. Dincer, F., M. Karaaslan, S. Colak, E. Tetik, O. Akgol, O. Altıntas, and C. Sabah, "Multi-band polarization independent cylindrical metamaterial absorber and sensor application," Modern Physics Letters B, Vol. 30, No. 8, 1650095, 2016.
doi:10.1142/S0217984916500950

28. Williams, C. R., M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Dual band terahertz waveguiding on a planar metal surface patterned with annular holes," Appl. Phys. Lett., Vol. 96, 011101, 2010.
doi:10.1063/1.3276545

29. Salisbury, W. W., "Absorbent body for electromagnetic waves," United States Patent 2599944, 1954.

30. Motevasselian, A. and B. L. G. Jonsson, "Radar cross section reduction of aircraft wing front end," Proceedings IEEE International Conference on Electromagnetics in Advanced Applications (ICEAA'09), 237-240, Turin, Italy, 2009.

31. Emerson, W. H., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, 484-490, 1973.
doi:10.1109/TAP.1973.1140517

32. Liu, X., T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters," Physical Review Letters, Vol. 107, 045901, 2011.
doi:10.1103/PhysRevLett.107.045901

33. Maier, T. and H. Brueckl, "Wavelength-tunable microbolometers with metamaterial absorbers," Optical Letters, Vol. 34, 3012-3014, 2009.
doi:10.1364/OL.34.003012

34. Luukkonen, O., S. I. Maslovski, and S. A. Tretyakov, "A stepwise Nicolson-Ross-Weir based material parameter extraction method," IEEE Antenn. Wirel. Prop. Lett., Vol. 10, 1295-1298, 2011.
doi:10.1109/LAWP.2011.2175897

35. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

36. Islam, S. S., M. R. I. Faruque, and M. T. Islam, "A new direct retrieval method of refractive index for the metamaterial," Current Science, Vol. 109, 337-342, 2015.

37. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Ch. 2, 34, 2005.