Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-15

Tracking Unknown Number of Stealth Targets in a Multi-Static Radar with Unknown Receiver Detection Profile Using RCS Model

By Amin Razmi, Mohammad Ali Masnadi-Shirazi, and Alireza Masnadi-Shirazi
Progress In Electromagnetics Research M, Vol. 70, 145-155, 2018
doi:10.2528/PIERM18041802

Abstract

The reliable detection of geometrically-based stealth targets using a conventional single sensor radar system may be extremely difficult. This is because low Radar Cross Section (RCS) from certain angles results in a low Signal to Noise Ratio (SNR). In the present work, multi-target tracking of stealth targets is investigated in a multi-static radar with passive receivers. The Directions of Arrival (DOA) of targets are estimated by the receivers without knowing the number of targets, and their positions are obtained based on the transmitter beam direction. The B2 bomber aircraft model has been used as a stealth target. The RCS of the model has been simulated for all collection of incident and reflected angles from an oblique impinging plane wave. Probability of Detection (Pd) is modeled using a Toeplitz-based method for different SNRs due to different RCS patterns and is fed to an Iterated Corrected Probability Hypothesis Density (IC-PHD) filter. In spite of considering the transmitter and receivers resolution in our input data generation, the proposed algorithm is able to track the targets individually when they are much close to or even cross each other. Simulation results show the improved performance of the proposed method compared to other existing approaches.

Citation


Amin Razmi, Mohammad Ali Masnadi-Shirazi, and Alireza Masnadi-Shirazi, "Tracking Unknown Number of Stealth Targets in a Multi-Static Radar with Unknown Receiver Detection Profile Using RCS Model," Progress In Electromagnetics Research M, Vol. 70, 145-155, 2018.
doi:10.2528/PIERM18041802
http://www.jpier.org/PIERM/pier.php?paper=18041802

References


    1. Pulford, G., "Taxonomy of multiple target tracking methods," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 152, No. 5, 291, 2005.
    doi:10.1049/ip-rsn:20045064

    2. Khaleghi, B., A. Khamis, F. Karray, and S. Razavi, "Multisensor data fusion: A review of the state-of-the-art," Information Fusion, Vol. 14, No. 1, 28-44, 2013.
    doi:10.1016/j.inffus.2011.08.001

    3. Vo, B.-N., M. Mallick, Y. Bar-Shalom, S. Coraluppi, R. Osborne III, R. Mahler, and B.-T. Vo, "Multitarget tracking," Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley, Sep. 2015.

    4. Bar-Shalom, Y., X. Tian, and P.Willett, Tracking and Data Fusion, YBS Publishing, Storrs, Conn., 2011.

    5. Blackman, S. and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, Boston, 1999.

    6. Mahler, R., Statistical Multisource-multitarget Information Fusion, Artech House, Boston, 2007.

    7. Mahler, R., Advances in Statistical Multisource-multitarget Information Fusion, Artech House, Boston, 2014.

    8. Uney, M., D. Clark, and S. Julier, "Distributed fusion of PHD filters via exponential mixture densities," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, No. 3, 521-531, 2013.
    doi:10.1109/JSTSP.2013.2257162

    9. Mahler, R., "Multi-target Bayes filtering via first-order multi-target moments," IEEE Trans. Aerosp. Electron. Syst., Vol. 39, No. 4, 1152-1178, Oct. 2003.
    doi:10.1109/TAES.2003.1261119

    10. Mahler, R., "PHD filters of higher order in target number," IEEE Trans. Aerosp. Electron. Syst., Vol. 43, No. 4, 1523-1543, 2007.
    doi:10.1109/TAES.2007.4441756

    11. Nannuru, S., M. Coates, M. Rabbat, and S. Blouin, "General solution and approximate implementation of the multisensor multitarget CPHD filter," Proc. IEEE ICASSP-15, 4055-4059, Brisbane, Australia, Apr. 2015.

    12. Nannuru, S., S. Blouin, M. Coates, and M. Rabbat, "Multisensor CPHD filter," IEEE Trans. Aerosp. Electron. Syst., Vol. 52, No. 4, 1834-1854, 2016.
    doi:10.1109/TAES.2016.150265

    13. Vivone, G., P. Braca, K. Granstrom, and P. Willett, "Multistatic Bayesian extended target tracking," IEEE Trans. Aerosp. Electron. Syst., Vol. 52, No. 6, 2626-2643, 2016.
    doi:10.1109/TAES.2016.150724

    14. Barbary, M. and P. Zong, "An accurate 3-D netted radar model for stealth target detection based on Legendre orthogonal polynomials and TDOA technique," International Journal of Modeling and Optimization, Vol. 5, No. 1, 22-31, Feb. 2015.
    doi:10.7763/IJMO.2015.V5.430

    15. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transitions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
    doi:10.1109/TAP.1986.1143830

    16. Zhang, Y. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Transactions on Signal Processing, Vol. 58, No. 3, 1668-1676, 2010.
    doi:10.1109/TSP.2009.2037074

    17. Qian, C., L. Huang, W. Zeng, and H. So, "Direction-of-arrival estimation for coherent signals without knowledge of source number," IEEE Sensors Journal, Vol. 14, No. 9, 3267-3273, 2014.
    doi:10.1109/JSEN.2014.2327633

    18. Li, W., Z.Wang, G.Wei, L. Ma, J. Hu, and D. Ding, "A survey on multisensor fusion and consensus filtering for sensor networks," Discrete Dynamics in Nature and Society, Vol. 2015, 1-12, 2015.

    19. Harrington, R., Time-harmonic Electromagnetic Fields, IEEE Press, New York, 2001.
    doi:10.1109/9780470546710

    20. Ufimtsev, P., Method of Edge Waves in the Physical Theory of Diffraction, NTIS, Springfield, Va., 1980.

    21. Kouyoumjian, R. and P. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, 1974.
    doi:10.1109/PROC.1974.9651

    22. Yu, D. and M. Zhang, "Comparison of various full-wave methods in calculating the RCS of inlet," 2008 International Conference on Microwave and Millimeter Wave Technology, 1018-1021, Nanjing, 2008.

    23. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.
    doi:10.1201/b17119

    24. Skolnik, M., Radar Handbook, McGraw-Hill, New York, 2009.

    25. Vo, B. and W. Ma, "The Gaussian mixture probability hypothesis density filter," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4091-4104, 2006.
    doi:10.1109/TSP.2006.881190

    26. Huang, Z., S. Sun, and J. Wu, "A new data association algorithm using probability hypothesis density filter," Journal of Electronics (China), Vol. 27, No. 2, 218-223, 2010.
    doi:10.1007/s11767-010-0304-0

    27. Mahler, R., B. Vo, and B. Vo, "CPHD filtering with unknown clutter rate and detection profile," IEEE Transactions on Signal Processing, Vol. 59, No. 8, 3497-3513, 2011.
    doi:10.1109/TSP.2011.2128316

    28. Saucan, A.-A., M. Coates, and M. Rabbat, "A multi-sensor multi-Bernoulli filter," IEEE Transactions on Signal Processing, Vol. 65, No. 20, 5495-5509, 2017.
    doi:10.1109/TSP.2017.2723348

    29. Vo, B., B. Vo, R. Hoseinnezhad, and R. Mahler, "Robust multi-bernoulli filtering," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, No. 3, 399-409, 2013.
    doi:10.1109/JSTSP.2013.2252325

    30. CST Microwave Studio, Computer Simulation Technology AG [Online], , available: http://www.cstamerica.com.

    31. Schuhmacher, D., B.-T. Vo, and B.-N. Vo, "A consistent metric for performance evaluation of multi-object filters," IEEE Transactions on Signal Processing, Vol. 56, No. 8, 3447-3457, Aug. 2008.
    doi:10.1109/TSP.2008.920469