Vol. 77
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-14
Analysis and Compensation of Ionospheric Time-Variant TEC Effect on GEO SAR Focusing
By
Progress In Electromagnetics Research M, Vol. 77, 205-213, 2019
Abstract
Compared to low Earth orbit (LEO) synthetic aperture radar (SAR), geosynchronous (GEO) SAR has a larger coverage and shorter revisit period. However, due to its longer integration timeit will be affected byionospheric time-variant total electron content (TEC), which introduces a phase error into the SAR azimuth signal.Using U.S. total electron content (USTEC) data, TEC variation with timeon GEO SAR trackis analyzed. It is shown thatquadratic phase error caused by time-variant TEC is main effect on image focusing compared to higher order errors. Therefore, contrast optimization autofocus (COA) algorithm can beusedfor compensation. The key steps of COA are given. Simulations based on scenes derived from PALSAR2 data demonstrate the effectiveness of COA.
Citation
Xingyu Liang Zhuo Li , "Analysis and Compensation of Ionospheric Time-Variant TEC Effect on GEO SAR Focusing," Progress In Electromagnetics Research M, Vol. 77, 205-213, 2019.
doi:10.2528/PIERM18112305
http://www.jpier.org/PIERM/pier.php?paper=18112305
References

1. Tomiyasu, K., "Synthetic aperture radar in geosynchronous orbit," Proc. IEEE Antennas Propag. Symp., 42-45, 1978.

2. Bruno, D., S. E. Hobbs, and G. Ottavianelli, "Geosynchronous synthetic aperture radar: Concept design, properties and possible applications," Acta Astronaut, Vol. 59, 149-156, 2006.
doi:10.1016/j.actaastro.2006.02.005

3. Zhao, B., X. Qi, H. Song, W. Gao, X. Han, and R. P. Chen, "The accurate fourth-order doppler parameter calculation and analysis for geosynchronous SAR," Progress In Electromagnetics Research, Vol. 140, 91-104, 2013.
doi:10.2528/PIER13031315

4. Zeng, T., W. Yang, Z. Ding, D. Liu, and T. Long, "A refined two-dimensional nonlinear chirp scaling algorithm for geosynchronous earth orbit SAR," Progress In Electromagnetics Research, Vol. 143, 19-46, 2013.
doi:10.2528/PIER13071206

5. Yu, Z., et al., "Correcting spatial variance of RCM for GEO SAR imaging based on time-frequency scaling," Sensors, Vol. 16, No. 7, 1091, 2016.
doi:10.3390/s16071091

6. Guarnieri, A. M., et al., "Geosynchronous SAR for earth monitoring by interferometry and imaging," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 210-213, 2012.

7. Hu, C., et al., "Background ionosphere effects on geosynchronous SAR focusing: Theoretical analysis and verification based on the BeiDou navigation satellite system (BDS)," IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, Vol. 9, No. 3, 1143-1162, 2016.
doi:10.1109/JSTARS.2015.2475283

8. Tian, Y., et al., "Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 721-725, 2015.
doi:10.1109/LGRS.2014.2360235

9. Chen, J. and Z. Li, "Simultaneous measurement of time-variant TEC for compensating ionospheric effect on geosynchronous SAR using HF-radar," IEEE 13th International Conference on Signal Processing (ICSP), 87-90, 2016.

10. Zhang, Q. B., Z. Yu, and P. Xiao, "Impacts of ionospheric temporal variability on L-band GEO SAR Imaging," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1194-1197, 2016.
doi:10.1109/IGARSS.2016.7729302

11. Belcher, D. P. and N. C. Rogers, "Theory and simulation of ionospheric effects on synthetic aperture radar," IET Radar Sonar Navig., Vol. 3, No. 5, 541-551, 2009.
doi:10.1049/iet-rsn.2008.0205

12. Jehle, M., et al., "Measurement of ionospheric TEC in spaceborne SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2460-2468, 2010.
doi:10.1109/TGRS.2010.2040621

13. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Boston and London, 1995.