Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-16
Optimizing Compensation Current to Minimize Underwater Electric Field of Ship
By
Progress In Electromagnetics Research M, Vol. 88, 169-178, 2020
Abstract
In order to reduce the underwater electric field generated by corrosion of ship, a boundary element method (BEM) combined with nonlinear polarization curve was employed to investigate the influence of output current of compensate anode in an electric field protection system on underwater electric field. Moreover, the BEM model was verified by physical scale modeling (PSM). The distribution characteristic of electric field and the variation trend of electric field with compensate current obtained by simulation are consistent with the experimental results. Moreover, the errors of peak-to-peak value of electric field obtained by experiment and simulation are within 20%. Compared with 0 mA compensation current, the peak-to-peak values of X component, Y component, Z component, and modulus are reduced by 52%, 70%, 72%, and 62% respectively when compensation current is 40 mA. The phenomenon of over-compensation will occur if compensation current is greater than 40 mA.
Citation
Qinglin Xu Xiangjun Wang Chong Xu Haiguang Wang , "Optimizing Compensation Current to Minimize Underwater Electric Field of Ship," Progress In Electromagnetics Research M, Vol. 88, 169-178, 2020.
doi:10.2528/PIERM19110406
http://www.jpier.org/PIERM/pier.php?paper=19110406
References

1. Kim, Y. S., et al., "Optimizing anode location in impressed current cathodic protection system to minimize underwater electric field using multiple linear regression analysis and artificial neural network methods," Engineering Analysis with Boundary Elements, Vol. 96, 84-93, 2018.
doi:10.1016/j.enganabound.2018.08.012

2. Chung, H. J., et al., "Accurate prediction of unknown corrosion currents distributed on the hull of a naval ship utilizing material sensitivity analysis," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1282-1285, 2011.
doi:10.1109/TMAG.2010.2089436

3. Lu, J., R. Yue, and F. Yu, "Monitoring and analysis of the marine underwater electric field of the typical shallow sea area," Near-Surface Geophysics and Environment Protection, Vol. 36, 35-40, 2012.

4. Schaefer, D., et al., "Conversion of UEP signatures between different environmental conditions using shaft currents," IEEE Journal of Oceanic Engineering, Vol. 42, 1-7, 2014.

5. Kim, Y. S., et al., "Computational interpretation of the relation between electric field and the applied current for cathodic protection under different conductivity environments," Metals and Materials International, Vol. 24, No. 2, 315-326, 2018.
doi:10.1007/s12540-018-0034-6

6. Kim, Y. S., et al., "Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle," Ocean Engineering, Vol. 148, 223-233, 2018.
doi:10.1016/j.oceaneng.2017.11.027

7. Baklezos, A. T., C. D. Nikolopoulos, and C. N. Capsalis, "An equivalent dipole method with novel measurement positioning for modeling electric emissions in space missions," Electromagnetics, Vol. 37, No. 7, 439-453, 2017.
doi:10.1080/02726343.2017.1376902

8. Chen, Z. Y. and S. H. Zhou, "SLF electromagnetic fields in stratified media," Applied Mechanics and Materials, Vol. 263, 35-38, 2012.
doi:10.4028/www.scientific.net/AMM.263-266.35

9. Raicevic, N. B., S. R. Aleksic, and S. S. Ilic, "Hybrid boundary element method for multi-layer electrostatic and magnetostatic problems," Electromagnetics, Vol. 30, No. 6, 507-524, 2010.
doi:10.1080/02726343.2010.499067

10. Holmes, J. J., "Application of models in the design of underwater electromagnetic signature reduction systems," Naval Engineers Journal, Vol. 119, No. 4, 19-29, 2007.
doi:10.1111/j.1559-3584.2007.00083.x

11. Wang, Y. and K. J. Karisallen, "Comparison of impressed current cathodic protection numerical modeling results with physical scale modeling data," Corrosion, Vol. 66, No. 10, 1-15, 2010.
doi:10.5006/1.3500829

12. Santos, W. J., J. F. Santiago, and J. C. F. Telles, "Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions," Engineering Analysis with Boundary Elements, Vol. 46, 67-74, 2014.
doi:10.1016/j.enganabound.2014.05.009

13. Lan, Z., et al., "Simulation of sacrificial anode protection for steel platform using boundary element method," Engineering Analysis with Boundary Elements, Vol. 36, 903-906, 2012.
doi:10.1016/j.enganabound.2011.07.018

14. Kim, Y. S., et al., "Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method," Engineering Analysis with Boundary Elements, Vol. 77, 36-48, 2017.
doi:10.1016/j.enganabound.2017.01.003

15. Abootalebi, O., et al., "Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method," Corrosion Science, Vol. 52, 678-687, 2010.
doi:10.1016/j.corsci.2009.10.025

16. Diaz, E. S. and R. Adey, "Optimising the location of anodes in cathodic protection systems to smooth potential distribution," Advances in Engineering Software, Vol. 36, 591-598, 2005.
doi:10.1016/j.advengsoft.2005.03.003

17. Wang, X., Q. Xu, and J. Zhang, "Simulating underwater electric field signal of ship using the boundary element method," Progress In Electromagnetics Research M, Vol. 76, 43-54, 2018.
doi:10.2528/PIERM18092706

18. Ditchfield, R. W., J. N. Mcgrath, and D. J. Tighe-Ford, "Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection," Journal of Applied Electrochemistry, Vol. 25, 54-60, 1995.

19. Xing, S. H., et al., "Optimization the quantity, locations and output currents of anodes to improve cathodic protection effect of semi-submersible crane vessel," Ocean Engineering, Vol. 113, 144-150, 2016.
doi:10.1016/j.oceaneng.2015.12.047