Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-19

A Novel Single-Layer Anisotropic Unit for Transmit-Reflect Double Function Array

By Hui-Fen Huang and Shuai-Nan Li
Progress In Electromagnetics Research M, Vol. 95, 155-163, 2020
doi:10.2528/PIERM20071105

Abstract

In this paper, a novel single-layer anisotropic unit with both reflection and transmission functions is proposed. The unit is a ring-encircled two mirror-symmetry fan-shaped patches, and is fabricated in one side of an F4B substrate. The unit structure is asymmetry with respect to x- and y-axes, and both transmitted and reflected cross-polarized fields are generated simultaneously when the co-polarized field is incident on the symmetry broken surface. Full 360° phase shift range is achieved by utilizing the cross-polarized field, and the transmitted and reflected coefficient magnitudes are above 0.49 close to the theoretical limit. Using this anisotropic unit, three single-layer transmit-reflect-arrays are designed: (1) Two high-gain beams in (θ1 = 0°, φ1 = 0°) and (θ1 = 180°, φ1 = 0°) directions. The gain is 20.9 dBi, and the 3 dB beam width is 8.9°. (2) Two OAM beams with l = 1 at (θ1 = 45°, φ1 = 0°) and (θ2 = 135°, φ2 = 0°). (3) Four OAM beams with l = 1 at (θ1 = 30°, φ1 = 0°), (θ2 = -30°, φ2 = 180°), (θ3 = 150°, φ3 = 0°) and (θ4 = -150°, φ4 = 180°). The simulated and measured results agree well and validate the design principle. The proposed metasurface has the following advantages: single-layer, transmission and reflection dual-functions, multi-beam, and high gain.

Citation


Hui-Fen Huang and Shuai-Nan Li, "A Novel Single-Layer Anisotropic Unit for Transmit-Reflect Double Function Array," Progress In Electromagnetics Research M, Vol. 95, 155-163, 2020.
doi:10.2528/PIERM20071105
http://www.jpier.org/PIERM/pier.php?paper=20071105

References


    1. Allen, L., M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, No. 11, 8185, Jun. 1992.
    doi:10.1103/PhysRevA.45.8185

    2. Yan, Y., et al., "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nature Commun., Vol. 5, 4876, 2014.
    doi:10.1038/ncomms5876

    3. Edfors, O. and A. J. Johansson, "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1126-1131, 2012.
    doi:10.1109/TAP.2011.2173142

    4. Zhao, N., X. Li, G. Li, and J. M. Kahn, "Capacity limits of spatially multiplexed free-space communication," Nature Photon., Vol. 9, 822-826, 2015.
    doi:10.1038/nphoton.2015.214

    5. Chen, M., K. Dholakia, and M. Mazilu, "Is there an optimal basis to maximise optical information transfer?," Sci. Rep., Vol. 6, Art. No. 22821, 2016.
    doi:10.1038/srep22821

    6. Gong, Y. H., R. Wang, and Y. K. Deng, "Generation and transmission of OAM-carring vortex beams using circular antenna array," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2940-2949, Jun. 2017.
    doi:10.1109/TAP.2017.2695526

    7. Hui, X. N., et al., "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, 2015.
    doi:10.1109/LAWP.2014.2387431

    8. Pan, Y., et al., "Generation of orbital angular momentum radio waves based on dielectric resonator antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 385-388, 2017.
    doi:10.1109/LAWP.2016.2578958

    9. Yan, Y., et al., "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nature Commun., Vol. 5, 4876, 2014.
    doi:10.1038/ncomms5876

    10. Thide, B., et al., "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, Art. No. 087701, Aug. 2007.
    doi:10.1103/PhysRevLett.99.087701

    11. Zhang, Z., S. Zheng, X. Jin, H. Chi, and X. Zhang, "Generation of plane spiral OAM waves using traveling-wave circular slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 8-11, 2017.
    doi:10.1109/LAWP.2016.2552227

    12. Ren, J. and K. W. Leung, "Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna," Appl. Phys. Lett., 2018.

    13. Chen, Y., et al., "Half-mode substrate integrated waveguide antenna for generating multiple orbital angular momentum modes," Electronics Lett., Vol. 52, 684-686, 2016.
    doi:10.1049/el.2015.4416

    14. Chen, Y., S. Zhang, Y. Hui, X. Jin, H. Chi, and X. Zhang, "A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1156-1158, 2016.
    doi:10.1109/LAWP.2015.2497243

    15. Qin, F., et al., "A transmission metasurface for generating OAM beams," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 10, 1793-1796, 2018.
    doi:10.1109/LAWP.2018.2867045

    16. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 396-400, 2017.
    doi:10.1109/TAP.2016.2626722

    17. Ma, L., et al., "Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity," Appl. Phys. Lett., Vol. 114, No. 8, 081603, 2019.
    doi:10.1063/1.5081514

    18. Yang, F., et al., "Design and experiment of a near-zero-thickness high-gain transmit-reflect-array antenna using anisotropic metasurface," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 2853-2861, 2018.
    doi:10.1109/TAP.2018.2820320

    19. Yu, S. X., et al., "Generating multiple orbital angular momentum vortex beams using metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, 241901, 2016.
    doi:10.1063/1.4953786