Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-08-02

Analysis of Novel Eddy Current Damper for Multi-Ring Permanent Magnet Thrust Bearing

By Dhruv Deshwal, Siddappa Iranna Bekinal, and Mrityunjay Doddamani
Progress In Electromagnetics Research M, Vol. 104, 13-22, 2021
doi:10.2528/PIERM21070107

Abstract

This paper deals with analyzing a novel eddy current damper for an axially magnetized multi-ring permanent magnet thrust bearing (MPMTB). Initially, the bearing is optimized for maximum axial force by selecting three general parameters (air gap, outer diameter of stator, and length) using a generalized optimization procedure. Then, the axial force of an optimized bearing is validated with the mathematical model results. Finally, the novel and conventional eddy current dampers (ECDs) for an optimized MPMTB are analyzed for damping forces and coefficients using three-dimensional (3D) finite element transient analysis in ANSYS. Based on the analysis results, the proposed novel structure could be selected to replace the conventional one for providing damping to MPMTB effectively without affecting the radial air gap between the rotor and stator rings.

Citation


Dhruv Deshwal, Siddappa Iranna Bekinal, and Mrityunjay Doddamani, "Analysis of Novel Eddy Current Damper for Multi-Ring Permanent Magnet Thrust Bearing," Progress In Electromagnetics Research M, Vol. 104, 13-22, 2021.
doi:10.2528/PIERM21070107
http://www.jpier.org/PIERM/pier.php?paper=21070107

References


    1. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
    doi:10.1109/TMAG.1978.1060019

    2. Schweitzer, G., "Magnetic bearings-applications, concepts and theory," JSME International Journal Series III, Vol. 33, No. 1, 13-18, 1990.

    3. Sotelo, G. G., R. Andrade, and A. C. Ferreira, "Magnetic bearing sets for a flywheel system," IEEE Trans. on Applied Super Conductivity, Vol. 17, No. 2, 2150-2153, 2007.
    doi:10.1109/TASC.2007.899268

    4. Le, Y., J. Fang, and J. Sun, "Design of a Halbach array permanent magnet damping system for high speed compressor with large thrust load," IEEE Trans. Magn., Vol. 51, No. 1, 1-9, 2015.

    5. Mukhopadhaya, S. C., et al., "Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension," IEEE Trans. Magn., Vol. 39, 3220-3222, 2003.
    doi:10.1109/TMAG.2003.816727

    6. Bekinal, S. I., S. Jana, and S. S. Kulkarni, "A hybrid (permanent magnet and foil) bearing set for complete passive levitation of high-speed rotors," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 231, 3679-3689, 2017.
    doi:10.1177/0954406216652647

    7. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
    doi:10.2528/PIERB12080910

    8. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
    doi:10.1109/TMAG.2009.2016088

    9. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, 2009.
    doi:10.1109/TMAG.2009.2025315

    10. Bekinal, S. I., A. T. Ramakrishna, and S. Jana, "Analysis of radial magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 47, 87-105, 2013.
    doi:10.2528/PIERB12102005

    11. Bekinal, S. I., A. T. Ramakrishna, and S. Jana, "Analysis of radial magnetized permanent magnet bearing characteristics for five degrees of freedom," Progress In Electromagnetics Research B, Vol. 52, 307-326, 2013.
    doi:10.2528/PIERB13032102

    12. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
    doi:10.1109/TMAG.2007.912854

    13. Tian, L. L., X. P. Ai, and Y. Q. Tian, "Analytical model of magnetic force for axial stack permanent-magnet bearings," IEEE Trans. Magn., Vol. 48, No. 10, 2592-2599, 2012.
    doi:10.1109/TMAG.2012.2197635

    14. Marth, E., G. Jungmayr, and W. Amrhein, "A 2-D-based analytical method for calculating permanent magnetic ring bearings with arbitrary magnetisation and its application to optimal bearing design," IEEE Trans. Magn., Vol. 50, No. 5, 1-8, 2014.
    doi:10.1109/TMAG.2013.2295550

    15. Bekinal, S. I., M. Doddamani, and N. D. Dravid, "Utilization of low computational cost two dimensional analytical equations in optimization of multi rings permanent magnet thrust bearings," Progress In Electromagnetics Research M, Vol. 62, 51-63, 2017.
    doi:10.2528/PIERM17072007

    16. Bekinal, S. I. and S. Jana, "Generalized three-dimensional mathematical models for force and stiffness in axially, radially, and perpendicularly magnetized passive magnetic bearings with `n' number of ring pairs," ASME Journal of Tribology, Vol. 138, No. 3, 031105(1-9), 2016.
    doi:10.1115/1.4032668

    17. Bekinal, S. I., M. R. Doddamani, and S. Jana, "Optimization of axially magnetized stack structured permanent magnet thrust bearing using three dimensional mathematical model," ASME Journal of Tribology, Vol. 139, No. 3, 031101(1-9), 2017.
    doi:10.1115/1.4034533

    18. Bekinal, S. I., M. R. Doddamani, B. V. Mohan, and S. Jana, "Generalized optimization procedure for rotational magnetized direction permanent magnet thrust bearing configuration," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 233, 2563-2573, 2019.
    doi:10.1177/0954406218786976

    19. Lijesh, K. P., M. R. Doddamani, and S. I. Bekinal, "A pragmatic optimization of axial stack-radial passive magnetic bearings," ASME Journal of Tribology, Vol. 140, 021901(1-9), 2018.

    20. Lijesh, K. P., M. R. Doddamani, S. I. Bekinal, and S. M. Muzakkir, "Multi-objective optimization of stacked radial passive magnetic bearing," Proc. IMechE, Part J: J. Engineering Tribology, Vol. 232, 1140-1159, 2018.
    doi:10.1177/1350650117733374

    21. Sodano, H. A. and D. J. Inman, "Modeling of a new active eddy current vibration control system," ASME Journal of Dynamic Systems, Measurement and Control, Vol. 130, 021009-1-11, 2008.

    22. Passenbrunner, J., G. Jungmayr, and W. Amrhein, "Design and analysis of a 1D actively stabilized system with viscoelastic damping support," Actuators, Vol. 8, No. 33, 2-18, 2019.

    23. Cheah, S. K. and H. A. Sodano, "Novel eddy current damping mechanism for passive magnetic bearings," Journal of Vibration and Control, Vol. 14, No. 11, 1749-1766, 2008.
    doi:10.1177/1077546308091219

    24. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
    doi:10.1109/TMAG.2012.2196443

    25. Detoni, J. G., Q. Cui, N. Amati, and A. Tonoli, "Modelling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications," Journal of Sound and Vibration, Vol. 373, 52-65, 2016.
    doi:10.1016/j.jsv.2016.03.013

    26. Safaeian, R. and H. Heydari, "Optimal design of a compact passive magnetic bearing based on dynamic modelling," IET Electric Power Applications, Vol. 13, No. 6, 720-729, 2019.
    doi:10.1049/iet-epa.2018.5674

    27. Safaeian, R. and H. Heydari, "Comprehensive comparison of different structures of passive permanent magnet bearings," IET Electric Power Applications, Vol. 12, No. 2, 179-187, 2017.
    doi:10.1049/iet-epa.2017.0308

    28. Bekinal, S. I. and M. Doddamani, "Improvement in the design calculations of multi ring permanent magnet thrust bearing," Progress In Electromagnetics Research M, Vol. 94, 83-93, 2020.
    doi:10.2528/PIERM20052403

    29. Bekinal, S. I. and M. Doddamani, "Optimum design methodology for axially polarized multi-ring radial and thrust permanent magnet bearings," Progress In Electromagnetics Research B, Vol. 88, 197-215, 2020.
    doi:10.2528/PIERB20090502