Vol. 106
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-15
Design of Y-Type Branch Broadband Dual-Polarization Antenna and C-Type Slot Line Notch Antenna
By
Progress In Electromagnetics Research M, Vol. 106, 105-115, 2021
Abstract
In order to satisfy the requirements of 2G/3G/4G wireless communication, two kinds of base station antennas with wideband, dual-polarized and three-modes are proposed in this paper. Firstly, a pair of diamond dipoles is placed in an orthogonal way to realize dual-polarizations, then a pair of Y-shaped branches is added to generate a new mode. The Y-type coupling feeding can increase the impedance bandwidth without increasing the size of antenna. The antenna achieves an impedance bandwidth of 51.75% (1.69-2.87 GHz) with a return loss lower than -14 dB. The antenna also has a stable radiation performance. The gain is greater than 8.6 dBi, and the port isolation is less than -27 dB over the entire frequency band. Then based on above antenna, a C-type slot notched antenna is added to improve anti-interference ability. Finally, band stop characteristics are obtained by etching a C-type slot line resonator on two dipoles. The results show that the bandwidth is 1.7-2.69 GHz, and the sharp notched band is 1.8-1.95 GHz. The C-type slot line here can be regarded as a quarter wavelength resonator in series. Moreover, the isolation of the port is less than -28 dB, and the 3 dB beamwidth in the bandwidth is 66±5˚. Both antennas are fabricated and have dual polarizations, simple structure, and good radiation performance, which can be used in the next generation of wireless communication.
Citation
Yan Yan Lan Li Jifang Zhang Heming Hu Yonghao Zhu Hua Chen Qing Fang , "Design of Y-Type Branch Broadband Dual-Polarization Antenna and C-Type Slot Line Notch Antenna," Progress In Electromagnetics Research M, Vol. 106, 105-115, 2021.
doi:10.2528/PIERM21102501
http://www.jpier.org/PIERM/pier.php?paper=21102501
References

1. Chen, Z. N. and K. M. Luk, "Antennas for Base Stations in Wireless Communications," The McGraw-Hill Companies, 1-10, 2009.

2. Xue, Q., S. W. Liao, and J. H. Xu, "A differentially-driven dual-polarized magneto-electric dipole antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 425-430, Jan. 2013.
doi:10.1109/TAP.2012.2214998

3. Su, D., J. J. Qian, H. Yang, and D. Fu, "A novel broadband polarization diversity antenna using a cross-pair of folded dipoles," IEEE Antennas Wireless Propag. Lett., Vol. 4, 433-435, 2005.

4. Liu, Y., H. Yi, F. W. Wang, and S. X. Gong, "A novel miniaturized broadband dual-polarized dipole antenna for base station," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1335-1338, 2013.
doi:10.1109/LAWP.2013.2285373

5. Chu, Q. X. and Y. Luo, "A broadband unidirectional multi-dipole antenna with very stable beamwidth," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2847-2852, 2013.
doi:10.1109/TAP.2013.2243898

6. Cui, Y., R. Li, and H. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4836-4840, Sept. 2014.
doi:10.1109/TAP.2014.2330596

7. Gou, Y., S. Yang, J. Li, and Z. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4392-4395, Aug. 2014.
doi:10.1109/TAP.2014.2327653

8. Zheng, D.-Z. and Q.-X. Chu, "A multimode wideband ±45° dual-polarized antenna with embedded loops," IEEE Antennas Wireless Propag. Lett., Vol. 16, 633-636, Jul. 2017.

9. Chu, Q. X., D. L. Wen, and Y. Luo, "A broadband ±45° dual-polarized antenna with Y-shaped feeding lines," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 483-490, Feb. 2015.
doi:10.1109/TAP.2014.2381238

10. Ngytn, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas Wireless Propag. Lett., No. 11, 411-414, 2012.

11. Seo, Y. S., et al., "Design of trapezoid monopole antenna with band-notched performance for UWB," IET Electronics Letters, Vol. 48, No. 12, 673-674, 2012.
doi:10.1049/el.2012.0650

12. Chen, B., et al., "Compact ultra-wideband antenna with reconfigurable notched bands," IET Electronics Letters, Vol. 48, No. 19, 1175-1176, 2012.
doi:10.1049/el.2012.0889

13. Liao, X. J., et al., "Aperture UWB antenna with triple band-notched characteristics," IET Electronics Letters, Vol. 47, No. 2, 77-79, 2011.
doi:10.1049/el.2010.3116

14. Yazdi, M. and N. Komjani, "Design of a band-notched UWB monopole antenna by means of an EBG structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 170-173, 2011.
doi:10.1109/LAWP.2011.2116150

15. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, NY, USA, 2001.
doi:10.1002/0471221619

16. Gomez-Calero, C., B. Taha Ahmed, and R. Martinez, "A novel ultrawide band frequency planar notch-filter antenna," Microw. Opt. Technol. Lett., Vol. 52, No. 1, 213-216, Jan. 2010.
doi:10.1002/mop.24845

17. Zhai, H., J. Zhang, Y. Zang, Q. Gao, and C. Liang, "An LTE base-station magnetoelectric dipole antenna with anti-interference characteristics and its MIMO system application," IEEE Antennas Wireless Propag. Lett., Vol. 14, 906-909, 2015.
doi:10.1109/LAWP.2014.2384519

18. Huang, H., Y. Liu, and S. Gong, "A broadband dual-polarized base station antenna with anti-interference capability," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 613-616, 2017.
doi:10.1109/LAWP.2016.2594095

19. Ding, C. F., X. Y. Zhang, Y. Zhang, Y. M. Pan, and Q. Xue, "Compact broadband dual-polarized filtering dipole antenna with high selectivity for base-station applications," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 5747-5756, Nov. 2018.
doi:10.1109/TAP.2018.2862465

20. Kraus, J. D. and R. J. Marhefkas, Antennas: For All Applications, 3rd Ed., 165-196, McGrw-Hill, Tempe, AZ, USA, 2002.